共 45 条
Monthly Streamflow Prediction of the Source Region of the Yellow River Based on Long Short-Term Memory Considering Different Lagged Months
被引:2
作者:

Chu, Haibo
论文数: 0 引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China

Wang, Zhuoqi
论文数: 0 引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China

Nie, Chong
论文数: 0 引用数: 0
h-index: 0
机构:
Chinese Res Inst Environm Sci, Beijing 100012, Peoples R China Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China
机构:
[1] Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China
[2] Chinese Res Inst Environm Sci, Beijing 100012, Peoples R China
来源:
关键词:
data-driven models;
lagged time analysis;
LSTM;
monthly streamflow prediction;
Yellow River;
SUPPORT VECTOR REGRESSION;
ARTIFICIAL NEURAL-NETWORK;
FUZZY INFERENCE SYSTEM;
MODEL;
MACHINE;
FLOW;
D O I:
10.3390/w16040593
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Accurate and reliable monthly streamflow prediction plays a crucial role in the scientific allocation and efficient utilization of water resources. In this paper, we proposed a prediction framework that integrates the input variable selection method and Long Short-Term Memory (LSTM). The input selection methods, including autocorrelation function (ACF), partial autocorrelation function (PACF), and time lag cross-correlation (TLCC), were used to analyze the lagged time between variables. Then, the performance of the LSTM model was compared with three other traditional methods. The framework was used to predict monthly streamflow at the Jimai, Maqu, and Tangnaihai stations in the source area of the Yellow River. The results indicated that grid search and cross-validation can improve the efficiency of determining model parameters. The models incorporating ACF, PACF, and TLCC with lagged time are evidently superior to the models using the current variable as the model inputs. Furthermore, the LSTM model, which considers the lagged time, demonstrated better performance in predicting monthly streamflow. The coefficient of determination (R2) improved by an average of 17.46%, 33.94%, and 15.29% for each station, respectively. The integrated framework shows promise in enhancing the accuracy of monthly streamflow prediction, thereby aiding in strategic decision-making for water resources management.
引用
收藏
页数:12
相关论文
共 45 条
- [1] A novel attention-based LSTM cell post-processor coupled with bayesian optimization for streamflow prediction[J]. JOURNAL OF HYDROLOGY, 2021, 601Alizadeh, Babak论文数: 0 引用数: 0 h-index: 0机构: Univ Texas Arlington, Dept Civil Engn, Arlington, TX 76019 USA Univ Texas Arlington, Dept Civil Engn, Arlington, TX 76019 USABafti, Alireza Ghaderi论文数: 0 引用数: 0 h-index: 0机构: Ferdowsi Univ Mashhad, Dept Civil Engn, Mashhad, Razavi Khorasan, Iran Univ Texas Arlington, Dept Civil Engn, Arlington, TX 76019 USAKamangir, Hamid论文数: 0 引用数: 0 h-index: 0机构: Univ Calif Davis, Dept Agr & Environm Engn, Davis, CA 95616 USA Univ Texas Arlington, Dept Civil Engn, Arlington, TX 76019 USAZhang, Yu论文数: 0 引用数: 0 h-index: 0机构: Univ Texas Arlington, Dept Civil Engn, Arlington, TX 76019 USA Univ Texas Arlington, Dept Civil Engn, Arlington, TX 76019 USAWright, Daniel B.论文数: 0 引用数: 0 h-index: 0机构: Univ Wisconsin, Dept Civil & Environm Engn, Madison, WI 53706 USA Univ Texas Arlington, Dept Civil Engn, Arlington, TX 76019 USAFranz, Kristie J.论文数: 0 引用数: 0 h-index: 0机构: Iowa State Univ, Dept Geol & Atmospher Sci, Ames, IA USA Univ Texas Arlington, Dept Civil Engn, Arlington, TX 76019 USA
- [2] Comparative Analysis of Recurrent Neural Network Architectures for Reservoir Inflow Forecasting[J]. WATER, 2020, 12 (05)Apaydin, Halit论文数: 0 引用数: 0 h-index: 0机构: Ankara Univ, Fac Agr, Dept Agr Engn, TR-06110 Ankara, Turkey Ankara Univ, Fac Agr, Dept Agr Engn, TR-06110 Ankara, TurkeyFeizi, Hajar论文数: 0 引用数: 0 h-index: 0机构: Univ Tabriz, Agr Fac, Dept Water Engn, Tabriz 51666, Iran Ankara Univ, Fac Agr, Dept Agr Engn, TR-06110 Ankara, TurkeySattari, Mohammad Taghi论文数: 0 引用数: 0 h-index: 0机构: Ankara Univ, Fac Agr, Dept Agr Engn, TR-06110 Ankara, Turkey Univ Tabriz, Agr Fac, Dept Water Engn, Tabriz 51666, Iran Ankara Univ, Fac Agr, Dept Agr Engn, TR-06110 Ankara, TurkeyColak, Muslume Sevba论文数: 0 引用数: 0 h-index: 0机构: Ankara Univ, Fac Agr, Dept Agr Engn, TR-06110 Ankara, Turkey Ankara Univ, Fac Agr, Dept Agr Engn, TR-06110 Ankara, TurkeyShamshirband, Shahaboddin论文数: 0 引用数: 0 h-index: 0机构: Ton Duc Thang Univ, Dept Management Sci & Technol Dev, Ho Chi Minh City, Vietnam Ton Duc Thang Univ, Fac Informat Technol, Ho Chi Minh City, Vietnam Ankara Univ, Fac Agr, Dept Agr Engn, TR-06110 Ankara, Turkey论文数: 引用数: h-index:机构:
- [3] Simulating runoff under changing climatic conditions: A comparison of the long short-term memory network with two conceptual hydrologic models[J]. JOURNAL OF HYDROLOGY, 2021, 592Bai, Peng论文数: 0 引用数: 0 h-index: 0机构: Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R ChinaLiu, Xiaomang论文数: 0 引用数: 0 h-index: 0机构: Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R ChinaXie, Jiaxin论文数: 0 引用数: 0 h-index: 0机构: Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China
- [4] A dynamic classification-based long short-term memory network model for daily streamflow forecasting in different climate regions[J]. ECOLOGICAL INDICATORS, 2023, 148Chu, Haibo论文数: 0 引用数: 0 h-index: 0机构: Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing, Peoples R China Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing, Peoples R ChinaWu, Jin论文数: 0 引用数: 0 h-index: 0机构: Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing, Peoples R China Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing, Peoples R ChinaWu, Wenyan论文数: 0 引用数: 0 h-index: 0机构: Univ Melbourne, Dept Infrastruct Engn, Melbourne, Vic, Australia Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing, Peoples R ChinaWei, Jiahua论文数: 0 引用数: 0 h-index: 0机构: Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing, Peoples R China Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing, Peoples R China
- [5] Monthly Streamflow Forecasting Using EEMD-Lasso-DBN Method Based on Multi-Scale Predictors Selection[J]. WATER, 2018, 10 (10)Chu, Haibo论文数: 0 引用数: 0 h-index: 0机构: Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R ChinaWei, Jiahua论文数: 0 引用数: 0 h-index: 0机构: Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China Qinghai Univ, State Key Lab Plateau Ecol & Agr, Xining 810016, Qinghai, Peoples R China Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R ChinaQiu, Jun论文数: 0 引用数: 0 h-index: 0机构: Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China Qinghai Univ, State Key Lab Plateau Ecol & Agr, Xining 810016, Qinghai, Peoples R China Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China
- [6] Improved Medium- and Long-Term Runoff Forecasting Using a Multimodel Approach in the Yellow River Headwaters Region Based on Large-Scale and Local-Scale Climate Information[J]. WATER, 2017, 9 (08):Chu, Haibo论文数: 0 引用数: 0 h-index: 0机构: Qinghai Univ, State Key Lab Plateau Ecol & Agr, Xining 810016, Qinghai, Peoples R China Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China Qinghai Univ, State Key Lab Plateau Ecol & Agr, Xining 810016, Qinghai, Peoples R ChinaWei, Jiahua论文数: 0 引用数: 0 h-index: 0机构: Qinghai Univ, State Key Lab Plateau Ecol & Agr, Xining 810016, Qinghai, Peoples R China Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China Qinghai Univ, State Key Lab Plateau Ecol & Agr, Xining 810016, Qinghai, Peoples R ChinaLi, Jiaye论文数: 0 引用数: 0 h-index: 0机构: Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China Qinghai Univ, State Key Lab Plateau Ecol & Agr, Xining 810016, Qinghai, Peoples R ChinaQiao, Zhen论文数: 0 引用数: 0 h-index: 0机构: Qinghai Univ, State Key Lab Plateau Ecol & Agr, Xining 810016, Qinghai, Peoples R China Qinghai Univ, State Key Lab Plateau Ecol & Agr, Xining 810016, Qinghai, Peoples R ChinaCao, Jiongwei论文数: 0 引用数: 0 h-index: 0机构: Qinghai Univ, State Key Lab Plateau Ecol & Agr, Xining 810016, Qinghai, Peoples R China Qinghai Univ, State Key Lab Plateau Ecol & Agr, Xining 810016, Qinghai, Peoples R China
- [7] Prediction of daily streamflow using artificial neural networks (ANNs), wavelet neural networks (WNNs), and adaptive neuro-fuzzy inference system (ANFIS) models[J]. WATER SUPPLY, 2020, 20 (04) : 1396 - 1408Dalkilic, Huseyin Yildirim论文数: 0 引用数: 0 h-index: 0机构: Erzincan Binali Yildirim Univ, Fac Engn, Dept Civil Engn, TR-24000 Erzincan, Turkey Erzincan Binali Yildirim Univ, Fac Engn, Dept Civil Engn, TR-24000 Erzincan, TurkeyHashimi, Said Ali论文数: 0 引用数: 0 h-index: 0机构: Erzincan Binali Yildirim Univ, Grad Sch Nat & Appl Sci, TR-24000 Erzincan, Turkey Erzincan Binali Yildirim Univ, Fac Engn, Dept Civil Engn, TR-24000 Erzincan, Turkey
- [8] Interpretable spatio-temporal attention LSTM model for flood forecasting[J]. NEUROCOMPUTING, 2020, 403 : 348 - 359Ding, Yukai论文数: 0 引用数: 0 h-index: 0机构: Hohai Univ, Coll Comp & Informat, Nanjing, Peoples R China Hohai Univ, Coll Comp & Informat, Nanjing, Peoples R ChinaZhu, Yuelong论文数: 0 引用数: 0 h-index: 0机构: Hohai Univ, Coll Comp & Informat, Nanjing, Peoples R China Hohai Univ, Coll Comp & Informat, Nanjing, Peoples R ChinaFeng, Jun论文数: 0 引用数: 0 h-index: 0机构: Hohai Univ, Coll Comp & Informat, Nanjing, Peoples R China Hohai Univ, Coll Comp & Informat, Nanjing, Peoples R ChinaZhang, Pengcheng论文数: 0 引用数: 0 h-index: 0机构: Hohai Univ, Coll Comp & Informat, Nanjing, Peoples R China Hohai Univ, Coll Comp & Informat, Nanjing, Peoples R ChinaCheng, Zirun论文数: 0 引用数: 0 h-index: 0机构: Tongji Univ, Sch Foreign Languages, Shanghai, Peoples R China Hohai Univ, Coll Comp & Informat, Nanjing, Peoples R China
- [9] Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation[J]. JOURNAL OF HYDROLOGY, 2020, 589 (589)Gao, Shuai论文数: 0 引用数: 0 h-index: 0机构: Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R ChinaHuang, Yuefei论文数: 0 引用数: 0 h-index: 0机构: Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China Qinghai Univ, State Key Lab Plateau Ecol & Agr, Xining 810016, Qinghai, Peoples R China Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R ChinaZhang, Shuo论文数: 0 引用数: 0 h-index: 0机构: Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R ChinaHan, Jingcheng论文数: 0 引用数: 0 h-index: 0机构: Changjiang River Sci Res Inst, Wuhan, Peoples R China Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R ChinaWang, Guangqian论文数: 0 引用数: 0 h-index: 0机构: Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R ChinaZhang, Meixin论文数: 0 引用数: 0 h-index: 0机构: Fujian Vocat Coll Water Conservancy & Elect Power, Yongan 366000, Peoples R China Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R ChinaLin, Qingsheng论文数: 0 引用数: 0 h-index: 0机构: Fujian Hydrol & Water Resources Survey Ctr, Sanming Branch, Sanming 365000, Peoples R China Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China
- [10] Inflow forecasting using regularized extreme learning machine: Haditha reservoir chosen as case study[J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (12) : 4201 - 4221Hameed, Mohammed Majeed论文数: 0 引用数: 0 h-index: 0机构: Al Maarif Univ Coll, Dept Civil Engn, Ramadi, Iraq Al Maarif Univ Coll, Dept Civil Engn, Ramadi, IraqAlOmar, Mohamed Khalid论文数: 0 引用数: 0 h-index: 0机构: Al Maarif Univ Coll, Dept Civil Engn, Ramadi, Iraq Al Maarif Univ Coll, Dept Civil Engn, Ramadi, IraqAl-Saadi, Abdulwahab A. Abdulrahman论文数: 0 引用数: 0 h-index: 0机构: Al Maarif Univ Coll, Dept Comp Engn Tech, Ramadi, Iraq Al Maarif Univ Coll, Dept Civil Engn, Ramadi, IraqAlSaadi, Mohammed Abdulhakim论文数: 0 引用数: 0 h-index: 0机构: Univ Nizwa, Nat & Med Sci Res Ctr, Nizwa, Oman Al Maarif Univ Coll, Dept Civil Engn, Ramadi, Iraq