Exact Non-Markovian Quantum Dynamics on the NISQ Device Using Kraus Operators

被引:7
作者
Seneviratne, Avin [1 ]
Walters, Peter L. [2 ]
Wang, Fei [2 ,3 ]
机构
[1] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA
[2] George Mason Univ, Dept Chem & Biochem, Fairfax, VA 22030 USA
[3] George Mason Univ, Quantum Sci & Engn Ctr, Fairfax, VA 22030 USA
基金
美国国家科学基金会;
关键词
EXCITONIC-STRUCTURE; LIGHT; COMPLEX; SYSTEM; REPRESENTATIONS; ROBUST;
D O I
10.1021/acsomega.3c09720
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The theory of open quantum systems has many applications ranging from simulating quantum dynamics in condensed phases to better understanding quantum-enabled technologies. At the center of theoretical chemistry are the developments of methodologies and computational tools for simulating charge and excitation energy transfer in solutions, biomolecules, and molecular aggregates. As a variety of these processes display non-Markovian behavior, classical computer simulation can be challenging due to exponential scaling with existing methods. With quantum computers holding the promise of efficient quantum simulations, in this paper, we present a new quantum algorithm based on Kraus operators that capture the exact non-Markovian effect at a finite temperature. The implementation of the Kraus operators on the quantum machine uses a combination of singular value decomposition (SVD) and optimal Walsh operators that result in shallow circuits. We demonstrate the feasibility of the algorithm by simulating the spin-boson dynamics and the exciton transfer in the Fenna-Matthews-Olson (FMO) complex. The NISQ results show very good agreement with the exact ones.
引用
收藏
页码:9666 / 9675
页数:10
相关论文
共 102 条
[1]   Coherence trapping and information backflow in dephasing qubits [J].
Addis, Carole ;
Brebner, Gregoire ;
Haikka, Pinja ;
Maniscalco, Sabrina .
PHYSICAL REVIEW A, 2014, 89 (02)
[2]   Universal simulation of Markovian quantum dynamics [J].
Bacon, Dave ;
Childs, Andrew M. ;
Chuang, Isaac L. ;
Kempe, Julia ;
Leung, Debbie W. ;
Zhou, Xinlan .
Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (06) :1-062302
[3]   Topology by dissipation [J].
Bardyn, C-E ;
Baranov, M. A. ;
Kraus, C. V. ;
Rico, E. ;
Imamoglu, A. ;
Zoller, P. ;
Diehl, S. .
NEW JOURNAL OF PHYSICS, 2013, 15
[4]   An efficient quantum algorithm for the time evolution of parameterized circuits [J].
Barison, Stefano ;
Vicentini, Filippo ;
Carleo, Giuseppe .
QUANTUM, 2021, 5
[5]   Efficient quantum algorithms for simulating sparse Hamiltonians [J].
Berry, Dominic W. ;
Ahokas, Graeme ;
Cleve, Richard ;
Sanders, Barry C. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) :359-371
[6]   Simulating Hamiltonian Dynamics with a Truncated Taylor Series [J].
Berry, Dominic W. ;
Childs, Andrew M. ;
Cleve, Richard ;
Kothari, Robin ;
Somma, Rolando D. .
PHYSICAL REVIEW LETTERS, 2015, 114 (09)
[7]   Conformational Dynamics Guides Coherent Exciton Migration in Conjugated Polymer Materials: First-Principles Quantum Dynamical Study [J].
Binder, Robert ;
Lauvergnat, David ;
Burghardt, Irene .
PHYSICAL REVIEW LETTERS, 2018, 120 (22)
[8]  
Bose A., ARXIV
[9]   Impact of Solvent on State-to-State Population Transport in Multistate Systems Using Coherences [J].
Bose, Amartya ;
Walters, Peter L. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (15) :4828-4836
[10]   Effect of temperature gradient on quantum transport [J].
Bose, Amartya ;
Walters, Peter L. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (37) :22431-22436