Plausible Model Improvement Utilizing the Information Obtained from Data Assimilation

被引:0
|
作者
Yokoyama, Masayuki [1 ,2 ,3 ]
Morishita, Yuya [4 ]
Murakami, Sadayoshi [4 ]
机构
[1] Natl Inst Nat Sci, Natl Inst Fus Sci, Rokkasho Res Ctr, Rokkasho, Aomori 0393212, Japan
[2] Grad Univ Adv Studies, SOKENDAI, Kanagawa 2400115, Japan
[3] Res Org Informat & Syst, Inst Stat Math, Tachikawa 1908562, Japan
[4] Kyoto Univ, Dept Nucl Engn, Kyoto 6158540, Japan
来源
PLASMA AND FUSION RESEARCH | 2024年 / 19卷
关键词
model improvement; data assimilation; multivariate regression; information criterion;
D O I
10.1585/pfr.19.1203006
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Data assimilation technique implemented in fusion research has enhanced the modeling capability. The quantitative "gap" between the original model (typically based on physics considerations and/or empirical approach) and the optimized model (obtained through data assimilation) can be utilized to improve the original model to align with the measured data. Such a procedure is proposed here by taking the model of the heat diffusivity of plasmas as an example. It successfully elucidates relevant parameters recognized in the
引用
收藏
页数:2
相关论文
共 50 条
  • [21] A Reduced Order Deep Data Assimilation model
    Casas, Cesar Quilodran
    Arcucci, Rossella
    Wu, Pin
    Pain, Christopher
    Guo, Yi-Ke
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 412
  • [22] Variational data assimilation for a nonlinear hydraulic model
    Chertok, DL
    Lardner, RW
    APPLIED MATHEMATICAL MODELLING, 1996, 20 (09) : 675 - 682
  • [23] Non-local Observations and Information Transfer in Data Assimilation
    van Leeuwen, Peter Jan
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2019, 5
  • [24] Data assimilation of local model error forecasts in a deterministic model
    Babovic, V
    Fuhrman, DR
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2002, 39 (10) : 887 - 918
  • [25] Towards an improvement of the atmospheric ozone distribution and variability by assimilation of satellite data
    Massart, S
    Cariolle, D
    Peuch, VH
    COMPTES RENDUS GEOSCIENCE, 2005, 337 (15) : 1305 - 1310
  • [26] Utilizing PBL Height Data from Multiple Observing Systems in the GEOS System. Part I: Assimilation Framework
    Zhu, Y.
    Arnold, N. P.
    Yang, E. -g.
    Ganeshan, M.
    Salmun, H.
    Palm, S.
    Santanello, J.
    Mcgrath-spangler, E. L.
    Lewis, J.
    Molod, A.
    Wu, D.
    Lei, T.
    EL Akkraoui, A.
    Sienkiewicz, M.
    MONTHLY WEATHER REVIEW, 2025, 153 (03) : 403 - 423
  • [27] Data assimilation framework: Linking an open data assimilation library (OpenDA) to a widely adopted model interface (OpenMI)
    Ridler, Marc E.
    van Velzen, Nils
    Hummel, Stef
    Sandholt, Inge
    Falk, Anne Katrine
    Heemink, Arnold
    Madsen, Henrik
    ENVIRONMENTAL MODELLING & SOFTWARE, 2014, 57 : 76 - 89
  • [28] Deep Learning of Systematic Sea Ice Model Errors From Data Assimilation Increments
    Gregory, William
    Bushuk, Mitchell
    Adcroft, Alistair
    Zhang, Yongfei
    Zanna, Laure
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2023, 15 (10)
  • [29] Dynamic Neural Assimilation: a deep learning and data assimilation model for air quality predictions
    Nikodemas Tučkus
    Ilaria D’Elia
    Marta Chinnici
    Rossella Arcucci
    Discover Applied Sciences, 6
  • [30] Dynamic Neural Assimilation: a deep learning and data assimilation model for air quality predictions
    Tuckus, Nikodemas
    D'Elia, Ilaria
    Chinnici, Marta
    Arcucci, Rossella
    DISCOVER APPLIED SCIENCES, 2024, 6 (04)