Decoupled rocket model of a spherical shell implosion in inertial confinement fusion

被引:0
作者
Li, Lulu [1 ]
Xu, Ruihua [1 ]
Zhao, Yingkui [1 ]
Wen, Wu [1 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
IGNITION; ACCELERATION; ABLATION; PHASE; YIELD;
D O I
10.1063/5.0173503
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In inertial confinement fusion, the rocket model has achieved great success in describing many important effects, including the residual mass of the shell, average implosion velocity, the motion of the ablative surface, and rocket efficiency (the ratio of the kinetic energy of the shell to absorbed energy). This model uses only the implosion parameter to describe the spherical ablative implosion dynamics under the thin-shell assumption. In this paper, we introduce a decoupled rocket model using an additional parameter that extends beyond the thin-shell assumption to describe the implosion dynamics at the same time. This provides information for the theoretical design of a thick shell by optimizing two parameters rather than only one implosion parameter. To demonstrate this, we apply these two models to design single-shell targets driven by the same radiation source. Our simulations show the decoupled rocket model can get better theoretical design results in a larger parameter space. (c) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:6
相关论文
共 50 条
[21]   Fuel-shell mix and yield degradation in kinetic shock-driven inertial confinement fusion implosions [J].
Sio, H. ;
Larroche, O. ;
Bose, A. ;
Atzeni, S. ;
Frenje, J. A. ;
Kabadi, N. V. ;
Gatu Johnson, M. ;
Li, C. K. ;
Glebov, V. ;
Stoeckl, C. ;
Lahmann, B. ;
Adrian, P. J. ;
Regan, S. P. ;
Birkel, A. ;
Seguin, F. H. ;
Petrasso, R. D. .
PHYSICS OF PLASMAS, 2022, 29 (07)
[22]   Experimentally Inferred Fusion Yield Dependencies of OMEGA Inertial Confinement Fusion Implosions [J].
Lees, A. ;
Betti, R. ;
Knauer, J. P. ;
Gopalaswamy, V. ;
Patel, D. ;
Woo, K. M. ;
Anderson, K. S. ;
Campbell, E. M. ;
Cao, D. ;
Carroll-Nellenback, J. ;
Epstein, R. ;
Forrest, C. ;
Goncharov, V. N. ;
Harding, D. R. ;
Hu, S. X. ;
Igumenshchev, I. V. ;
Janezic, R. T. ;
Mannion, O. M. ;
Radha, P. B. ;
Regan, S. P. ;
Shvydky, A. ;
Shah, R. C. ;
Shmayda, W. T. ;
Stoeckl, C. ;
Theobald, W. ;
Thomas, C. .
PHYSICAL REVIEW LETTERS, 2021, 127 (10)
[23]   Application of proton radiography in experiments of relevance to inertial confinement fusion [J].
Sarri, G. ;
Borghesi, M. ;
Cecchetti, C. A. ;
Romagnani, L. ;
Jung, R. ;
Willi, O. ;
Hoarty, D. J. ;
Stevenson, R. M. ;
Brown, C. R. D. ;
James, S. F. ;
Hobbs, P. ;
Lockyear, J. ;
Bulanov, S. V. ;
Pegoraro, F. .
EUROPEAN PHYSICAL JOURNAL D, 2009, 55 (02) :299-303
[24]   Enhanced energy coupling for indirectly driven inertial confinement fusion [J].
Ping, Y. ;
Smalyuk, V. A. ;
Amendt, P. ;
Tommasini, R. ;
Field, J. E. ;
Khan, S. ;
Bennett, D. ;
Dewald, E. ;
Graziani, F. ;
Johnson, S. ;
Landen, O. L. ;
MacPhee, A. G. ;
Nikroo, A. ;
Pino, J. ;
Prisbrey, S. ;
Ralph, J. ;
Seugling, R. ;
Strozzi, D. ;
Tipton, R. E. ;
Wang, Y. M. ;
Loomis, E. ;
Merritt, E. ;
Montgomery, D. .
NATURE PHYSICS, 2019, 15 (02) :138-+
[25]   Strong Coupling and Degeneracy Effects in Inertial Confinement Fusion Implosions [J].
Hu, S. X. ;
Militzer, B. ;
Goncharov, V. N. ;
Skupsky, S. .
PHYSICAL REVIEW LETTERS, 2010, 104 (23)
[26]   Gamma-ray measurements for inertial confinement fusion applications [J].
Kim, Yongho ;
Herrmann, Hans W. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (04)
[27]   Progress of indirect drive inertial confinement fusion in the United States [J].
Kline, J. L. ;
Batha, S. H. ;
Benedetti, L. R. ;
Bennett, D. ;
Bhandarkar, S. ;
Hopkins, L. F. Berzak ;
Biener, J. ;
Biener, M. M. ;
Bionta, R. ;
Bond, E. ;
Bradley, D. ;
Braun, T. ;
Callahan, D. A. ;
Caggiano, J. ;
Cerjan, C. ;
Cagadas, B. ;
Clark, D. ;
Castro, C. ;
Dewald, E. L. ;
Doeppner, T. ;
Divol, L. ;
Dylla-Spears, R. ;
Eckart, M. ;
Edgell, D. ;
Farrell, M. ;
Field, J. ;
Fittinghoff, D. N. ;
Johnson, M. Gatu ;
Grim, G. ;
Haan, S. ;
Haines, B. M. ;
Hamza, A., V ;
Hartouni, E. P. ;
Hatarik, R. ;
Henderson, K. ;
Herrmann, H. W. ;
Hinkel, D. ;
Ho, D. ;
Hohenberger, M. ;
Hoover, D. ;
Huang, H. ;
Hoppe, M. L. ;
Hurricane, O. A. ;
Izumi, N. ;
Johnson, S. ;
Jones, O. S. ;
Khan, S. ;
Kozioziemski, B. J. ;
Kong, C. ;
Kroll, J. .
NUCLEAR FUSION, 2019, 59 (11)
[28]   Design and Microfabrication of Cooling Arm for Inertial Confinement Fusion Application [J].
Xu, Bin ;
Liu, Jing-quan ;
Jiang, Shui-dong ;
Tang, Gang ;
Yan, Xiao-xiao ;
Yang, Bin ;
Chen, Xiang ;
Yang, Chun-sheng .
SENSORS AND MATERIALS, 2015, 27 (11) :1091-1101
[29]   Inertial confinement fusion based on the ion-bubble trigger [J].
Jafari, S. ;
Nilkar, M. ;
Ghasemizad, A. ;
Mehdian, H. .
PHYSICS OF PLASMAS, 2014, 21 (10)
[30]   Adiabat-shaping in indirect drive inertial confinement fusion [J].
Baker, K. L. ;
Robey, H. F. ;
Milovich, J. L. ;
Jones, O. S. ;
Smalyuk, V. A. ;
Casey, D. T. ;
MacPhee, A. G. ;
Pak, A. ;
Celliers, P. M. ;
Clark, D. S. ;
Landen, O. L. ;
Peterson, J. L. ;
Berzak-Hopkins, L. F. ;
Weber, C. R. ;
Haan, S. W. ;
Doeppner, T. D. ;
Dixit, S. ;
Giraldez, E. ;
Hamza, A. V. ;
Jancaitis, K. S. ;
Kroll, J. J. ;
Lafortune, K. N. ;
MacGowan, B. J. ;
Moody, J. D. ;
Nikroo, A. ;
Widmayer, C. C. .
PHYSICS OF PLASMAS, 2015, 22 (05)