Decoupled rocket model of a spherical shell implosion in inertial confinement fusion

被引:0
|
作者
Li, Lulu [1 ]
Xu, Ruihua [1 ]
Zhao, Yingkui [1 ]
Wen, Wu [1 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
IGNITION; ACCELERATION; ABLATION; PHASE; YIELD;
D O I
10.1063/5.0173503
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In inertial confinement fusion, the rocket model has achieved great success in describing many important effects, including the residual mass of the shell, average implosion velocity, the motion of the ablative surface, and rocket efficiency (the ratio of the kinetic energy of the shell to absorbed energy). This model uses only the implosion parameter to describe the spherical ablative implosion dynamics under the thin-shell assumption. In this paper, we introduce a decoupled rocket model using an additional parameter that extends beyond the thin-shell assumption to describe the implosion dynamics at the same time. This provides information for the theoretical design of a thick shell by optimizing two parameters rather than only one implosion parameter. To demonstrate this, we apply these two models to design single-shell targets driven by the same radiation source. Our simulations show the decoupled rocket model can get better theoretical design results in a larger parameter space. (c) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:6
相关论文
共 50 条
  • [1] First Inertial Confinement Fusion Implosion Experiment
    Lan, Ke
    Dong, Yunsong
    Wu, Junfeng
    Li, Zhichao
    Chen, Yaohua
    Cao, Hui
    Hao, Liang
    Li, Shu
    Ren, Guoli
    Jiang, Wei
    Yin, Chuansheng
    Sun, Chuankui
    Chen, Zhongjing
    Huang, Tianxuan
    Xie, Xufei
    Li, Sanwei
    Miao, Wenyong
    Hu, Xin
    Tang, Qi
    Song, Zifeng
    Chen, Jiabin
    Xiao, Yunqing
    Che, Xingsen
    Deng, Bo
    Wang, Qiangqiang
    Deng, Keli
    Cao, Zhurong
    Peng, Xiaoshi
    Liu, Xiangming
    He, Xiaoan
    Yan, Ji
    Pu, Yudong
    Tu, Shaoyong
    Yuan, Yongteng
    Yu, Bo
    Wang, Feng
    Yang, Jiamin
    Jiang, Shaoen
    Gao, Lin
    Xie, Jun
    Zhang, Wei
    Liu, Yiyang
    Zhang, Zhanwen
    Zhang, Haijun
    He, Zhibing
    Du, Kai
    Wang, Liquan
    Chen, Xu
    Zhou, Wei
    Huang, Xiaoxia
    PHYSICAL REVIEW LETTERS, 2021, 127 (24)
  • [2] Implosion dynamics measurements by monochromatic x-ray radiography in inertial confinement fusion
    Chen, Bolun
    Yang, Zhenghua
    Wei, Minxi
    Pu, Yudong
    Hu, Xin
    Chen, Tao
    Liu, Shenye
    Yan, Ji
    Huang, Tianxuan
    Jiang, Shaoen
    Ding, Yongkun
    PHYSICS OF PLASMAS, 2014, 21 (12)
  • [3] The effects of convergence ratio on the implosion behavior of DT layered inertial confinement fusion capsules
    Haines, Brian M.
    Yi, S. A.
    Olson, R. E.
    Khan, S. F.
    Kyrala, G. A.
    Zylstra, A. B.
    Bradley, P. A.
    Peterson, R. R.
    Kline, J. L.
    Leeper, R. J.
    Shah, R. C.
    PHYSICS OF PLASMAS, 2017, 24 (07)
  • [4] Energy gain of a thin DT shell target in inertial confinement fusion
    Khoshbinfar, Soheil
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2014, 23 (11):
  • [5] A comprehensive alpha-heating model for inertial confinement fusion
    Christopherson, A. R.
    Betti, R.
    Bose, A.
    Howard, J.
    Woo, K. M.
    Campbell, E. M.
    Sanz, J.
    Spears, B. K.
    PHYSICS OF PLASMAS, 2018, 25 (01)
  • [6] Instabilities and Mixing in Inertial Confinement Fusion
    Zhou, Ye
    Sadler, James D.
    Hurricane, Omar A.
    ANNUAL REVIEW OF FLUID MECHANICS, 2025, 57 : 197 - 225
  • [7] Inertial confinement fusion: a defence context
    Randewich, Andrew
    Lock, Rob
    Garbett, Warren
    Bethencourt-Smith, Dominic
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2184):
  • [8] Diagnosing inertial confinement fusion ignition
    Moore, A. S.
    Divol, L.
    Bachmann, B.
    Bionta, R.
    Bradley, D.
    Casey, D. T.
    Celliers, P.
    Chen, H.
    Do, A.
    Dewald, E.
    Eckart, M.
    Fittinghoff, D.
    Frenje, J.
    Gatu-Johnson, M.
    Geppert-Kleinrath, H.
    Geppert-Kleinrath, V.
    Grim, G.
    Hahn, K.
    Hohenberger, M.
    Holder, J.
    Hurricane, O.
    Izumi, N.
    Kerr, S.
    Khan, S. F.
    Kilkenny, J. D.
    Kim, Y.
    Kozioziemski, B.
    Lemos, N.
    MacPhee, A. G.
    Michel, P.
    Millot, M.
    Meaney, K. D.
    Nagel, S.
    Pak, A.
    Ralph, J. E.
    Ross, J. S.
    Rubery, M. S.
    Schlossberg, D. J.
    Smalyuk, V.
    Swadling, G.
    Tommasini, R.
    Trosseille, C.
    Zylstra, A. B.
    Mackinnon, A.
    Moody, J. D.
    Landen, O. L.
    Town, R.
    NUCLEAR FUSION, 2024, 64 (10)
  • [9] Motivation and fabrication methods for inertial confinement fusion and inertial fusion energy targets
    Borisenko, NG
    Akunets, AA
    Bushuev, VS
    Dorogotovtsev, VM
    Merkuliev, YA
    LASER AND PARTICLE BEAMS, 2003, 21 (04) : 505 - 509
  • [10] Supplemental heating of conventional Inertial Confinement Fusion
    Thomas, B. R.
    Hughes, S. J.
    Garbett, W. J.
    Sircombe, N. J.
    8TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA 2013), 2016, 688