Phonon scattering channel and electrical transport of graphene induced by the anharmonic phonon renormalization

被引:1
作者
Guo, Donglin [1 ]
Xu, Zhengmeng [1 ]
Li, Chunhong [1 ]
Li, Kejian [1 ]
Shao, Bin [1 ,2 ]
Luo, Xianfu [1 ]
Sun, Jianchun [1 ]
Ma, Yilong [1 ]
机构
[1] Chongqing Univ Sci & Technol, Coll Met & Mat Engn, Chongqing 401331, Peoples R China
[2] Chongqing Acad S&T Dev, Chongqing 401123, Peoples R China
基金
中国国家自然科学基金;
关键词
Anharmonic phonon renormalization; Phonon scattering channel; Electrical property; Lattice thermal conductivity; Graphene; THERMAL-CONDUCTIVITY; CARBON;
D O I
10.1016/j.physe.2023.115827
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Using full electron-phonon interactions and the Boltzmann transport equation, the phonon scattering channel and electrical properties of graphene are investigated under anharmonic phonon renormalization (APRN). After the anharmonic phonon renormalization is considered, both phonon frequency and three-phonon phase space become small with the temperature. Meanwhile, the APRN has a greater effect on the acoustic branch and little effect on the optical branch. When three-phonon scattering is considered, the corresponding thermal conductivity is 3518 W/mK (300 K), 1900 W/mK (500 K), and 1122 W/mK (800 K), respectively. After four-phonon scattering is considered, the thermal conductivity of graphene decreases to 1844 W/mK at 300 K, 900 W/mK at 500 K, and 600 W/mK at 800 K, respectively. For three-phonon scattering, the primary scattering channels include ZA + TA -> ZO, TA + TA -> ZA, LA + LA -> ZO, ZA/TA -> TA + LA, LA/ZO -> ZO + TA, TO -> ZA + LA and LO -> ZO + LA. About the four-phonon scattering channel, the main contributions originate from X + ZA -> ZA + ZA, X + ZA/ZO -> ZA + ZO, and X + TA -> LA + ZO. The anharmonic phonon renormalization enlarges the strength of electron-phonon coupling, leading to the increase of n-type electric resistance from 24 omega to 26 omega at room temperature. This work gives insight into the phonon scattering channel and electrical property via anharmonic phonon renormalization in which normal processes dominate the ph-ph scattering.
引用
收藏
页数:12
相关论文
共 47 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[3]   Physically founded phonon dispersions of few-layer materials and the case of borophene [J].
Carrete, Jesus ;
Li, Wu ;
Lindsay, Lucas ;
Broido, David A. ;
Gallego, Luis J. ;
Mingo, Natalio .
MATERIALS RESEARCH LETTERS, 2016, 4 (04) :204-211
[4]  
Chen SS, 2012, NAT MATER, V11, P203, DOI [10.1038/NMAT3207, 10.1038/nmat3207]
[5]   Origins of significant reduction of lattice thermal conductivity in graphene allotropes [J].
Choudhry, Usama ;
Yue, Shengying ;
Liao, Bolin .
PHYSICAL REVIEW B, 2019, 100 (16)
[6]   Thermal conductivity decomposition in two-dimensional materials: Application to graphene [J].
Fan, Zheyong ;
Pereira, Luiz Felipe C. ;
Hirvonen, Petri ;
Ervasti, Mikko M. ;
Elder, Ken R. ;
Donadio, Davide ;
Ala-Nissila, Tapio ;
Harju, Ari .
PHYSICAL REVIEW B, 2017, 95 (14)
[7]   Force and heat current formulas for many-body potentials in molecular dynamics simulations with applications to thermal conductivity calculations [J].
Fan, Zheyong ;
Pereira, Luiz Felipe C. ;
Wang, Hui-Qiong ;
Zheng, Jin-Cheng ;
Donadio, Davide ;
Harju, Ari .
PHYSICAL REVIEW B, 2015, 92 (09)
[8]   Thermal Conductivity of Graphene in Corbino Membrane Geometry [J].
Faugeras, Clement ;
Faugeras, Blaise ;
Orlita, Milan ;
Potemski, M. ;
Nair, Rahul R. ;
Geim, A. K. .
ACS NANO, 2010, 4 (04) :1889-1892
[9]   Four-phonon scattering reduces intrinsic thermal conductivity of graphene and the contributions from flexural phonons [J].
Feng, Tianli ;
Ruan, Xiulin .
PHYSICAL REVIEW B, 2018, 97 (04)
[10]   Thermal Conductivity of Graphene and Graphite: Collective Excitations and Mean Free Paths [J].
Fugallo, Giorgia ;
Cepellotti, Andrea ;
Paulatto, Lorenzo ;
Lazzeri, Michele ;
Marzari, Nicola ;
Mauri, Francesco .
NANO LETTERS, 2014, 14 (11) :6109-6114