Profile Likelihood for Hierarchical Models Using Data Doubling

被引:1
作者
Lele, Subhash R. [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2R3, Canada
关键词
data cloning; functions of parameters; Laplace approximation; nuisance parameters; parameterization invariance; DATA CLONING; INFERENCE;
D O I
10.3390/e25091262
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In scientific problems, an appropriate statistical model often involves a large number of canonical parameters. Often times, the quantities of scientific interest are real-valued functions of these canonical parameters. Statistical inference for a specified function of the canonical parameters can be carried out via the Bayesian approach by simply using the posterior distribution of the specified function of the parameter of interest. Frequentist inference is usually based on the profile likelihood for the parameter of interest. When the likelihood function is analytical, computing the profile likelihood is simply a constrained optimization problem with many numerical algorithms available. However, for hierarchical models, computing the likelihood function and hence the profile likelihood function is difficult because of the high-dimensional integration involved. We describe a simple computational method to compute profile likelihood for any specified function of the parameters of a general hierarchical model using data doubling. We provide a mathematical proof for the validity of the method under regularity conditions that assure that the distribution of the maximum likelihood estimator of the canonical parameters is non-singular, multivariate, and Gaussian.
引用
收藏
页数:14
相关论文
共 38 条
  • [1] GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY
    BOLLERSLEV, T
    [J]. JOURNAL OF ECONOMETRICS, 1986, 31 (03) : 307 - 327
  • [2] METAANALYSIS FOR 2X2 TABLES - A BAYESIAN-APPROACH
    CARLIN, JB
    [J]. STATISTICS IN MEDICINE, 1992, 11 (02) : 141 - 158
  • [3] Stan: A Probabilistic Programming Language
    Carpenter, Bob
    Gelman, Andrew
    Hoffman, Matthew D.
    Lee, Daniel
    Goodrich, Ben
    Betancourt, Michael
    Brubaker, Marcus A.
    Guo, Jiqiang
    Li, Peter
    Riddell, Allen
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (01): : 1 - 29
  • [4] De Luca G, 2004, SKEW-ELLIPTICAL DISTRIBUTIONS AND THEIR APPLICATIONS: A JOURNEY BEYOND NORMALITY, P205
  • [5] ESTIMATION OF GROWTH AND EXTINCTION PARAMETERS FOR ENDANGERED SPECIES
    DENNIS, B
    MUNHOLLAND, PL
    SCOTT, JM
    [J]. ECOLOGICAL MONOGRAPHS, 1991, 61 (02) : 115 - 143
  • [6] Data-cloning SMC2: A global optimizer for maximum likelihood estimation of latent variable models
    Duan, Jin-Chuan
    Fulop, Andras
    Hsieh, Yu-Wei
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 143
  • [7] EFRON B, 1993, BIOMETRIKA, V80, P3, DOI 10.1093/biomet/80.1.3
  • [8] AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY WITH ESTIMATES OF THE VARIANCE OF UNITED-KINGDOM INFLATION
    ENGLE, RF
    [J]. ECONOMETRICA, 1982, 50 (04) : 987 - 1007
  • [9] Fisher RA, 1930, P CAMB PHILOS SOC, V26, P528
  • [10] Gause G.F., 2019, The Struggle for Existence: A Classic of Mathematical Biology and Ecology