Systematic strain-induced bandgap tuning in binary III-V semiconductors from density functional theory

被引:8
作者
Mondal, Badal [1 ,2 ]
Tonner-Zech, Ralf [1 ]
机构
[1] Univ Leipzig, Wilhelm Ostwald Inst Phys & Theoret Chem, D-04103 Leipzig, Germany
[2] Philipps Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
关键词
III-V semiconductors; direct-indirect transition; density functional theory; optical properties; bandgap engineering; strain engineering; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; DIRECT ABSORPTION-EDGE; PRESSURE-DEPENDENCE; MOVPE GROWTH; COMPOUND SEMICONDUCTORS; ELECTRONIC-STRUCTURE; EPITAXIAL-GROWTH; VALENCE BANDS; GAP;
D O I
10.1088/1402-4896/acd08b
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The modification of the nature and size of bandgaps for III-V semiconductors is of strong interest for optoelectronic applications. Strain can be used to systematically tune the bandgap over a wide range of values and induce indirect-to-direct transition (IDT), direct-to-indirect transition (DIT), and other changes in bandgap nature. Here, we establish a predictive first-principles approach, based on density functional theory, to analyze the effect of uniaxial, biaxial, and isotropic strain on the bandgap. We show that systematic variation is possible. For GaAs, DITs are observed at 1.56% isotropic compressive strain and 3.52% biaxial tensile strain, while for GaP an IDT is found at 2.63% isotropic tensile strain. We additionally propose a strategy for the realization of direct-to-indirect transition by combining biaxial strain with uniaxial strain. Further transition points are identified for strained GaSb, InP, InAs, and InSb and compared to the elemental semiconductor silicon. Our analyses thus provide a systematic and predictive approach to strain-induced bandgap tuning in binary III-V semiconductors.
引用
收藏
页数:16
相关论文
共 158 条
[1]   Collapse of the charge disproportionation and covalency-driven insulator-metal transition in Sr3Fe2O7 under pressure [J].
Adler, P ;
Schwarz, U ;
Syassen, K ;
Rozenberg, GK ;
Machavariani, GY ;
Milner, AP ;
Pasternak, MP ;
Hanfland, M .
PHYSICAL REVIEW B, 1999, 60 (07) :4609-4617
[2]   Effect of the Uniaxial Compression on the GaAs Nanowire Solar Cell [J].
Alekseev, Prokhor A. ;
Sharov, Vladislav A. ;
Borodin, Bogdan R. ;
Dunaevskiy, Mikhail S. ;
Reznik, Rodion R. ;
Cirlin, George E. .
MICROMACHINES, 2020, 11 (06) :1-13
[3]   Structural Metastability and Quantum Confinement in Zn1-xCoxO Nanoparticles [J].
Almonacid, G. ;
Martin-Rodriguez, R. ;
Renero-Lecuna, C. ;
Pellicer-Porres, J. ;
Agouram, S. ;
Valiente, R. ;
Gonzalez, J. ;
Rodriguez, F. ;
Nataf, L. ;
Gamelin, D. R. ;
Segura, A. .
NANO LETTERS, 2016, 16 (08) :5204-5212
[4]   OPTIMIZED TIGHT-BINDING VALENCE BANDS AND HETEROJUNCTION OFFSETS IN STRAINED III-V SEMICONDUCTORS [J].
ANDERSON, NG ;
JONES, SD .
JOURNAL OF APPLIED PHYSICS, 1991, 70 (08) :4342-4356
[5]  
[Anonymous], 1974, Symmetry and Strain-Induced Effects in Semiconductors
[6]   The GW method [J].
Aryasetiawan, F ;
Gunnarsson, O .
REPORTS ON PROGRESS IN PHYSICS, 1998, 61 (03) :237-312
[7]   Direct Band Gap Wurtzite Gallium Phosphide Nanowires [J].
Assali, S. ;
Zardo, I. ;
Plissard, S. ;
Kriegner, D. ;
Verheijen, M. A. ;
Bauer, G. ;
Meijerink, A. ;
Belabbes, A. ;
Bechstedt, F. ;
Haverkort, J. E. M. ;
Bakkers, E. P. A. M. .
NANO LETTERS, 2013, 13 (04) :1559-1563
[8]  
Aulbur WG, 2000, SOLID STATE PHYS, V54, P1
[9]   Widely tunable GaAs bandgap via strain engineering in core/shell nanowires with large lattice mismatch [J].
Balaghig, Leila ;
Bussone, Genziana ;
Grifone, Raphael ;
Huebner, Rene ;
Grenzer, Joerg ;
Ghorbani-Asl, Mahdi ;
Krasheninnikov, Arkady, V ;
Schneider, Harald ;
Helm, Manfred ;
Dimakis, Emmanouil .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]   An ab initio based approach to optical properties of semiconductor heterostructures [J].
Bannow, L. C. ;
Rosenow, P. ;
Springer, P. ;
Fischer, E. W. ;
Hader, J. ;
Moloney, J. V. ;
Tonner, R. ;
Koch, S. W. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2017, 25 (06)