Liouville-type theorems for a nonlinear fractional Choquard equation

被引:1
|
作者
Duong, Anh Tuan [1 ,5 ]
Loan, Tran Thi [2 ]
Quyet, Dao Trong [3 ]
Thang, Dao Manh [4 ]
机构
[1] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, Hanoi, Vietnam
[2] Hanoi Natl Univ Educ, Dept Math, Hanoi, Vietnam
[3] Acad Finance, Dong Ngac, Hanoi, Vietnam
[4] Hung Vuong High Sch Gifted Student, Phu Tho, Vietnam
[5] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, 1 Dai Co Viet, Hanoi, Vietnam
关键词
fractional Choquard equations; Liouville-type theorems; stable solutions; POSITIVE SOLUTIONS; STABLE-SOLUTIONS; CLASSIFICATION; SYMMETRY; COMPONENTS; SYSTEMS;
D O I
10.1002/mana.202000462
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are concerned with the fractional Choquard equation on the whole space R-N (-Delta)(s)u = ( 1 |x|(N-2s)*mu p)mu(p-1) with 0 < s < 1,N > 2s and p is an element of R. We first prove that the equation does not possess any positive solution for p <= 1. When p > 1, we establish a Liouville type theorem saying that if N < 6s + 4s(1 + root p(2) -p)p - 1, then the equation has no positive stable solution. This extends, in particular, a result in [27] to the fractional Choquard equation.
引用
收藏
页码:2321 / 2331
页数:11
相关论文
共 50 条