Transcriptome analysis in contrasting maize inbred lines and functional analysis of five maize NAC genes under drought stress treatment

被引:8
|
作者
Ding, Ning [1 ]
Zhao, Ying [1 ]
Wang, Weixiang [1 ]
Liu, Xuyang [2 ]
Shi, Wentong [1 ]
Zhang, Dengfeng [2 ]
Chen, Jiajie [1 ]
Ma, Shuo [1 ]
Sun, Qingpeng [1 ]
Wang, Tianyu [2 ]
Lu, Min [1 ]
机构
[1] Beijing Univ Agr, Coll Plant Sci & Technol, Beijing Key Lab Agr Applicat & New Tech, Beijing, Peoples R China
[2] Chinese Acad Agr Sci, Natl Key Facil Crop Gene Resources & Genet Improve, Inst Crop Sci, Beijing, Peoples R China
来源
FRONTIERS IN PLANT SCIENCE | 2023年 / 13卷
基金
中国国家自然科学基金;
关键词
maize; drought stress; NAC; transcriptome analysis; transgenic Arabidopsis; POSITIVE REGULATOR; EXPRESSION; FAMILY; RESISTANCE; TOLERANCE; DISTINCT; DEFENSE;
D O I
10.3389/fpls.2022.1097719
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Drought substantially influences crop growth and development. NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) have received much attention for their critical roles in drought stress responses. To explore the maize NAC genes in response to drought stress, the transcriptome sequencing data of NAC TFs in two maize inbred lines, the drought tolerance line H082183 and the sensitive line Lv28, were used to screen the differentially expressed genes (DEGs). There were 129 maize NAC protein-coding genes identified, of which 15 and 20 NAC genes were differentially expressed between the two genotypes under MD and SD treatments, respectively. Meanwhile, the phylogenetic relationship of 152 non-redundant NAC family TFs in maize was generated. The maize NAC family proteins were grouped into 13 distinct subfamilies. Five drought stress-responsive NAC family members, which were designed as ZmNAP, ZmNAC19, ZmNAC4, ZmJUB1(JUBGBRUNNEN1), and ZmNAC87, were selected for further study. The expression of ZmNAP, ZmNAC19, ZmNAC4, ZmJUB1, and ZmNAC87 were significantly induced by drought, dehydration, polyethylene glycol (PEG) stress, and abscisic acid (ABA) treatments. The overexpressing Arabidopsis of these five NAC genes was generated for functional characterization, respectively. Under different concentrations of NaCl, D-mannitol stress, and ABA treatments, the sensitivity of ZmNAP-, ZmNAC19-, ZmNAC4-, ZmJUB1-, and ZmNAC87-overexpressing lines was significantly increased at the germination stage compared to the wild-type lines. The overexpression of these five NAC members significantly improved the drought stress tolerance in transgenic Arabidopsis. Yeast two-hybrid screening analysis revealed that ZmNAP may cooperatively interact with 11 proteins including ZmNAC19 to activate the drought stress response. The above results inferred that ZmNAP, ZmNAC19, ZmNAC4, ZmJUB1, and ZmNAC87 may play important roles in the plant response to drought stress and may be useful in bioengineering breeding and drought tolerance improvement.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Genome-wide transcriptome analysis of two maize inbred lines under drought stress
    Zheng, Jun
    Fu, Junjie
    Gou, Mingyue
    Huai, Junling
    Liu, Yunjun
    Jian, Min
    Huang, Quansheng
    Guo, Xiying
    Dong, Zhigang
    Wang, Hongzhi
    Wang, Guoying
    PLANT MOLECULAR BIOLOGY, 2010, 72 (4-5) : 407 - 421
  • [2] Genome-wide transcriptome analysis of two maize inbred lines under drought stress
    Jun Zheng
    Junjie Fu
    Mingyue Gou
    Junling Huai
    Yunjun Liu
    Min Jian
    Quansheng Huang
    Xiying Guo
    Zhigang Dong
    Hongzhi Wang
    Guoying Wang
    Plant Molecular Biology, 2010, 72 : 407 - 421
  • [3] Transcriptome Analysis of Flowering Time Genes under Drought Stress in Maize Leaves
    Song, Kitae
    Kim, Hyo Chul
    Shin, Seungho
    Kim, Kyung-Hee
    Moon, Jun-Cheol
    Kim, Jae Yoon
    Lee, Byung-Moo
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [4] Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines
    Zenda, Tinashe
    Liu, Songtao
    Wang, Xuan
    Liu, Guo
    Jin, Hongyu
    Dong, Anyi
    Yang, Yatong
    Duan, Huijun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (06)
  • [5] Identification of Drought Tolerant Mechanisms in Maize Seedlings Based on Transcriptome Analysis of Recombination Inbred Lines
    Min, Haowei
    Chen, Chengxuan
    Wei, Shaowei
    Shang, Xiaoling
    Sun, Meiyun
    Xia, Ran
    Liu, Xiangguo
    Hao, Dongyun
    Chen, Huabang
    Xie, Qi
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [6] Transcriptome analysis of maize inbred lines differing in drought tolerance provides novel insights into the molecular mechanisms of drought responses in roots
    Zheng, Hongxiang
    Yang, Zhen
    Wang, Wenqing
    Guo, Shangjing
    Li, Zongxin
    Liu, Kaichang
    Sui, Na
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2020, 149 : 11 - 26
  • [7] IDENTIFICATION AND ANALYSIS OF MAIZE INBRED LINES IN DROUGHT TOLERANCE AT SEEDLING STAGE
    Jiang, Liangyu
    Lv, Ying
    Wang, Zhen
    Yang, Wei
    Ci, Jiabin
    Ran, Xuejiao
    Yang, Weiguang
    FRESENIUS ENVIRONMENTAL BULLETIN, 2021, 30 (03): : 3059 - 3069
  • [8] Characteristics of microRNAs and Target Genes in Maize Root under Drought Stress
    Tang, Qi
    Lv, Haozhe
    Li, Qimeng
    Zhang, Xiaoyue
    Li, Le
    Xu, Jie
    Wu, Fengkai
    Wang, Qingjun
    Feng, Xuanjun
    Lu, Yanli
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (09)
  • [9] ANALYSIS OF MAIZE LEAF PHOTOSYNTHESIS UNDER DROUGHT STRESS
    DWYER, LM
    STEWART, DW
    TOLLENAAR, M
    CANADIAN JOURNAL OF PLANT SCIENCE, 1992, 72 (02) : 477 - 481
  • [10] Transcriptome analysis of maize pollen grains under drought stress during flowering
    Zhang, Yinping
    Soualihou, Soualiou
    Li, Juan
    Xu, Yonghan
    Rose, Ray J.
    Ruan, Yong-Ling
    Li, Jincai
    Song, Youhong
    CROP & PASTURE SCIENCE, 2022, 73 (09) : 1026 - 1041