Transcriptome analysis in contrasting maize inbred lines and functional analysis of five maize NAC genes under drought stress treatment

被引:8
作者
Ding, Ning [1 ]
Zhao, Ying [1 ]
Wang, Weixiang [1 ]
Liu, Xuyang [2 ]
Shi, Wentong [1 ]
Zhang, Dengfeng [2 ]
Chen, Jiajie [1 ]
Ma, Shuo [1 ]
Sun, Qingpeng [1 ]
Wang, Tianyu [2 ]
Lu, Min [1 ]
机构
[1] Beijing Univ Agr, Coll Plant Sci & Technol, Beijing Key Lab Agr Applicat & New Tech, Beijing, Peoples R China
[2] Chinese Acad Agr Sci, Natl Key Facil Crop Gene Resources & Genet Improve, Inst Crop Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
maize; drought stress; NAC; transcriptome analysis; transgenic Arabidopsis; POSITIVE REGULATOR; EXPRESSION; FAMILY; RESISTANCE; TOLERANCE; DISTINCT; DEFENSE;
D O I
10.3389/fpls.2022.1097719
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Drought substantially influences crop growth and development. NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) have received much attention for their critical roles in drought stress responses. To explore the maize NAC genes in response to drought stress, the transcriptome sequencing data of NAC TFs in two maize inbred lines, the drought tolerance line H082183 and the sensitive line Lv28, were used to screen the differentially expressed genes (DEGs). There were 129 maize NAC protein-coding genes identified, of which 15 and 20 NAC genes were differentially expressed between the two genotypes under MD and SD treatments, respectively. Meanwhile, the phylogenetic relationship of 152 non-redundant NAC family TFs in maize was generated. The maize NAC family proteins were grouped into 13 distinct subfamilies. Five drought stress-responsive NAC family members, which were designed as ZmNAP, ZmNAC19, ZmNAC4, ZmJUB1(JUBGBRUNNEN1), and ZmNAC87, were selected for further study. The expression of ZmNAP, ZmNAC19, ZmNAC4, ZmJUB1, and ZmNAC87 were significantly induced by drought, dehydration, polyethylene glycol (PEG) stress, and abscisic acid (ABA) treatments. The overexpressing Arabidopsis of these five NAC genes was generated for functional characterization, respectively. Under different concentrations of NaCl, D-mannitol stress, and ABA treatments, the sensitivity of ZmNAP-, ZmNAC19-, ZmNAC4-, ZmJUB1-, and ZmNAC87-overexpressing lines was significantly increased at the germination stage compared to the wild-type lines. The overexpression of these five NAC members significantly improved the drought stress tolerance in transgenic Arabidopsis. Yeast two-hybrid screening analysis revealed that ZmNAP may cooperatively interact with 11 proteins including ZmNAC19 to activate the drought stress response. The above results inferred that ZmNAP, ZmNAC19, ZmNAC4, ZmJUB1, and ZmNAC87 may play important roles in the plant response to drought stress and may be useful in bioengineering breeding and drought tolerance improvement.
引用
收藏
页数:16
相关论文
共 36 条
[1]   A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence [J].
Balazadeh, Salma ;
Siddiqui, Hamad ;
Allu, Annapurna D. ;
Matallana-Ramirez, Lilian P. ;
Caldana, Camila ;
Mehrnia, Mohammad ;
Zanor, Maria-Ines ;
Koehler, Barbara ;
Mueller-Roeber, Bernd .
PLANT JOURNAL, 2010, 62 (02) :250-264
[2]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[3]   JUNGBRUNNEN1 Confers Drought Tolerance Downstream of the HD-Zip I Transcription Factor AtHB13 [J].
Ebrahimian-Motlagh, Saghar ;
Ribone, Pamela A. ;
Thirumalaikumar, Venkatesh P. ;
Allu, Annapurna D. ;
Chan, Raquel L. ;
Mueller-Roeber, Bernd ;
Balazadeh, Salma .
FRONTIERS IN PLANT SCIENCE, 2017, 8
[4]   Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots [J].
Fan, Wenqiang ;
Zhao, Mengyao ;
Li, Suxin ;
Bai, Xue ;
Li, Jia ;
Meng, Haowei ;
Mu, Zixin .
BMC PLANT BIOLOGY, 2016, 16
[5]   Plant abiotic stress response and nutrient use efficiency [J].
Gong, Zhizhong ;
Xiong, Liming ;
Shi, Huazhong ;
Yang, Shuhua ;
Herrera-Estrella, Luis R. ;
Xu, Guohua ;
Chao, Dai-Yin ;
Li, Jingrui ;
Wang, Peng-Yun ;
Qin, Feng ;
Li, Jijang ;
Ding, Yanglin ;
Shi, Yiting ;
Wang, Yu ;
Yang, Yongqing ;
Guo, Yan ;
Zhu, Jian-Kang .
SCIENCE CHINA-LIFE SCIENCES, 2020, 63 (05) :635-674
[6]   AtNAP, a NAC family transcription factor, has an important role in leaf senescence [J].
Guo, YF ;
Gan, SS .
PLANT JOURNAL, 2006, 46 (04) :601-612
[7]   Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice [J].
Hu, Honghong ;
Dai, Mingqiu ;
Yao, Jialing ;
Xiao, Benze ;
Li, Xianghua ;
Zhang, Qifa ;
Xiong, Lizhong .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (35) :12987-12992
[8]   NAC Transcription Factors ANAC087 and ANAC046 Control Distinct Aspects of Programmed Cell Death in the Arabidopsis Columella and Lateral Root Cap [J].
Huysmans, Marlies ;
Buono, Rafael Andrade ;
Skorzinski, Noemi ;
Radio, Marta Cubria ;
De Winter, Freya ;
Parizot, Boris ;
Mertens, Jan ;
Karimi, Mansour ;
Fendrych, Matyas ;
Nowack, Moritz K. .
PLANT CELL, 2018, 30 (09) :2197-2213
[9]   NAC transcription factor gene regulatory and protein-protein interaction networks in plant stress responses and senescence [J].
Jensen, Michael K. ;
Skriver, Karen .
IUBMB LIFE, 2014, 66 (03) :156-166
[10]   Root-Specific Expression of OsNAC10 Improves Drought Tolerance and Grain Yield in Rice under Field Drought Conditions [J].
Jeong, Jin Seo ;
Kim, Youn Shic ;
Baek, Kwang Hun ;
Jung, Harin ;
Ha, Sun-Hwa ;
Do Choi, Yang ;
Kim, Minkyun ;
Reuzeau, Christophe ;
Kim, Ju-Kon .
PLANT PHYSIOLOGY, 2010, 153 (01) :185-197