A novel self-supervised graph model based on counterfactual learning for diversified recommendation

被引:2
|
作者
Ji, Pu [1 ]
Yang, Minghui [1 ]
Sun, Rui [1 ]
机构
[1] Hebei Univ Technol, Sch Econ & Management, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Recommender model; Diversified recommendation; Imbalanced preference distribution; Counterfactual learning; Self -supervised learning; OPTIMIZATION;
D O I
10.1016/j.is.2023.102322
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Consumers' needs present a trend of diversification, which causes the emergence of diversified recommendation systems. However, existing diversified recommendation research mostly focuses on objective function construction rather than on the root cause that limits diversity-namely, imbalanced data distribution. This study considers how to balance data distribution to improve recommendation diversity. We propose a novel selfsupervised graph model based on counterfactual learning (SSG-CL) for diversified recommendation. SSG-CL first distinguishes the dominant and disadvantageous categories for each user based on long-tail theory. It then introduces counterfactual learning to construct an auxiliary view with relatively balanced distribution among the dominant and disadvantageous categories. Next, we conduct contrastive learning between the user-item interaction graph and the auxiliary view as the self-supervised auxiliary task that aims to improve recommendation diversity. Finally, SSG-CL leverages a multitask training strategy to jointly optimize the main accuracy-oriented recommendation task and the self-supervised auxiliary task. Finally, we conduct experimental studies on real-world datasets, and the results indicate good SSG-CL performance in terms of accuracy and diversity.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Multi-behavior Enhanced Self-supervised Graph Learning for Social Recommendation
    Liu, Shiwei
    Xu, Yong
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 1092 - 1097
  • [22] Self-supervised knowledge distillation in counterfactual learning for VQA
    Bi, Yandong
    Jiang, Huajie
    Zhang, Hanfu
    Hu, Yongli
    Yin, Baocai
    PATTERN RECOGNITION LETTERS, 2024, 177 : 33 - 39
  • [23] Self-supervised graph transformer networks for social recommendation
    Li, Qinyao
    Yang, Qimeng
    Tian, Shengwei
    Yu, Long
    COMPUTERS & ELECTRICAL ENGINEERING, 2025, 123
  • [24] Popularity-Debiased Graph Self-Supervised for Recommendation
    Li, Shanshan
    Hu, Xinzhuan
    Guo, Jingfeng
    Liu, Bin
    Qi, Mingyue
    Jia, Yutong
    ELECTRONICS, 2024, 13 (04)
  • [25] Self-Supervised Graph Attention Collaborative Filtering for Recommendation
    Zhu, Jiangqiang
    Li, Kai
    Peng, Jinjia
    Qi, Jing
    ELECTRONICS, 2023, 12 (04)
  • [26] Graph Adversarial Self-Supervised Learning
    Yang, Longqi
    Zhang, Liangliang
    Yang, Wenjing
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [27] Graph Self-Supervised Learning: A Survey
    Liu, Yixin
    Jin, Ming
    Pan, Shirui
    Zhou, Chuan
    Zheng, Yu
    Xia, Feng
    Yu, Philip S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) : 5879 - 5900
  • [28] A Recommendation Algorithm Based on a Self-supervised Learning Pretrain Transformer
    Yu-Hao Xu
    Zhen-Hai Wang
    Zhi-Ru Wang
    Rong Fan
    Xing Wang
    Neural Processing Letters, 2023, 55 : 4481 - 4497
  • [29] Self-supervised scientific document recommendation based on contrastive learning
    Tan, Shicheng
    Zhang, Tao
    Zhao, Shu
    Zhang, Yanping
    SCIENTOMETRICS, 2023, 128 (09) : 5027 - 5049
  • [30] A Recommendation Algorithm Based on a Self-supervised Learning Pretrain Transformer
    Xu, Yu-Hao
    Wang, Zhen-Hai
    Wang, Zhi-Ru
    Fan, Rong
    Wang, Xing
    NEURAL PROCESSING LETTERS, 2023, 55 (04) : 4481 - 4497