Facile spray-printing of hydrophobic and porous gas diffusion electrodes enabling prolonged electrochemical CO2 reduction to ethylene

被引:6
|
作者
Yu, Feilin [1 ]
Leung, Puiki [1 ]
Xu, Qian [2 ]
Mavrikis, Sotirios [3 ]
Nazarovs, Pavels [4 ]
Shah, Akeel [1 ]
Wang, Ling [3 ]
de Leon, Carlos Ponce [3 ]
机构
[1] Chongqing Univ, Key Lab Low grade Energy Utilizat Technol & Syst, MOE, Chongqing 400030, Peoples R China
[2] Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Peoples R China
[3] Univ Southampton, Fac Engn & Phys Sci, Southampton SO17 1BJ, England
[4] SIA Schaeffler Balt, Ganibu Dambis 24a-52, LV-1005 Riga, Latvia
基金
中国国家自然科学基金; 欧盟地平线“2020”;
关键词
Gas diffusion electrodes; Hydrophobic porous electrodes; Porous nanostructures; Spray-printing; Electrochemical CO2 reduction (ECO2RR); CARBON-DIOXIDE; POLYCRYSTALLINE COPPER; FUEL-CELL; ELECTROREDUCTION; MORPHOLOGY; CATALYST; LAYER; SELECTIVITY; CHALLENGES; CONVERSION;
D O I
10.1016/j.jpowsour.2023.233201
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The twelve-electron carbon dioxide reduction reaction (12e- CO2RR) constitutes a sustainable alternative to steam cracking for the production of ethylene (C2H4), the world's most coveted organic compound. State-of-theart gas diffusion electrodes (GDEs), while exhibiting promising faradaic efficiencies for C2H4 electrosynthesis, suffer from poor long-term stability, particularly at elevated applied currents, due to catalyst delamination and flooding of the diffusion layer. Herein, through the development and optimisation of a novel, facile and flexible spray-printing method, hydrophobic porous carbon and copper electrodes with different architectures are obtained readily by using suspensions consisting of two fugitive solvents, which provide larger surface areas for the three-phase boundary and improve the hydrophobicity/flooding tolerance of the electrodes, due to their increased surface roughness and binder (PVDF) content. These structures, with pore sizes as low as 60 & mu;m, transform the surfaces from incomplete wetting to highly hydrophobic, and can be employed as gas-diffusion, microporous or supportive layers, in addition to acting as a supporting substrate for the copper-based catalyst. These layers are spray-printed in a stacked assembly upon polymer film and carbon paper substrates, and ultimately result in an extended duration of enhanced C2H4 production at applied currents of up to 200 mA cm-2 via multiple configurations. Through layer-by-layer spray-printing with a hydrophobic microporous layer and porous catalyst support, this inventive approach can efficiently control the hydrophobicity of the GDE, and extends the cathode operation time by a factor of 6, with a maximum faradaic efficiency of 52% attained, and an average of >30% maintained over 12 h of continuous electrolysis, demonstrating the versatility of this technique for engineering highly durable GDEs for selective CO2 reduction toward multi-carbon (C2+) commodities, energy storage devices and other electrochemical applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Self-supported copper-based gas diffusion electrodes improve the local CO2 concentration for efficient electrochemical CO2 reduction
    Mustafa, Azeem
    Lougou, Bachirou Guene
    Shuai, Yong
    Wang, Zhijiang
    Haseeb-ur-Rehman
    Razzaq, Samia
    Wang, Wei
    Pan, Ruming
    Zhao, Jiupeng
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2024, 18 (03)
  • [32] Probing Inside the Catalyst Layer on Gas Diffusion Electrodes in Electrochemical Reduction of CO and CO2
    Sun, Qiwen
    Wang, Jin
    Fu, Linke
    Ye, Yao
    Chang, Xiaoxia
    Xu, Bingjun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025,
  • [33] Method-Best Practices and Common Pitfalls in Experimental Investigation of Electrochemical CO2 Reduction at Gas Diffusion Electrodes
    Osiewacz, Jens
    Ellendorff, Barbara
    Kunz, Ulrich
    Turek, Thomas
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (10)
  • [34] Hydrophobicity Graded Gas Diffusion Layer for Stable Electrochemical Reduction of CO2
    Li, Linbo
    Chen, Jun
    Mosali, Venkata Sai Sriram
    Liang, Yan
    Bond, Alan M.
    Gu, Qinfen
    Zhang, Jie
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (39)
  • [35] Visualisation and quantification of flooding phenomena in gas diffusion electrodes used for electrochemical CO2 reduction: A combined EDX/ICP-MS approach
    Kong, Ying
    Hu, Huifang
    Liu, Menglong
    Hou, Yuhui
    Kolivoska, Viliam
    Vesztergom, Soma
    Broekmann, Peter
    JOURNAL OF CATALYSIS, 2022, 408 : 1 - 8
  • [36] Boosting the Productivity of Electrochemical CO2 Reduction to Multi-Carbon Products by Enhancing CO2 Diffusion through a Porous Organic Cage
    Chen, Chunjun
    Yan, Xupeng
    Wu, Yahui
    Liu, Shoujie
    Zhang, Xiudong
    Sun, Xiaofu
    Zhu, Qinggong
    Wu, Haihong
    Han, Buxing
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (23)
  • [37] Atomic Layer Deposition of Cu Electrocatalysts on Gas Diffusion Electrodes for CO2 Reduction
    Lenef, Julia D.
    Lee, Si Young
    Fuelling, Kalyn M.
    Rivera Cruz, Kevin E.
    Prajapati, Aditya
    Delgado Cornejo, Daniel O.
    Cho, Tae H.
    Sun, Kai
    Alvarado, Eugenio
    Arthur, Timothy S.
    Roberts, Charles A.
    Hahn, Christopher
    McCrory, Charles C. L.
    Dasgupta, Neil P.
    NANO LETTERS, 2023, 23 (23) : 10779 - 10787
  • [38] Insights into the hydrophobic surface promoting electrochemical CO2 reduction to ethylene
    Zeng, Di
    Li, Chengjin
    Wang, Wenjing
    Zhang, Lifang
    Zhang, Yu
    Wang, Juxue
    Zhang, Ling
    Zhou, Xiaoxia
    Wang, Wenzhong
    CHEMICAL ENGINEERING JOURNAL, 2023, 461
  • [39] Study of CuSb bimetallic flow-through gas diffusion electrodes for efficient electrochemical CO2 reduction to CO
    Mustafa, Azeem
    Lougou, Bachirou Guene
    Shuai, Yong
    Wang, Zhijiang
    ur-Rehman, Haseeb
    Razzaq, Samia
    Wang, Wei
    Pan, Ruming
    Li, Fanghua
    Han, Lei
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 657 : 363 - 372
  • [40] Electrochemically deposited Sn catalysts with dense tips on a gas diffusion electrode for electrochemical CO2 reduction
    Lim, Jinkyu
    Kang, Phil Woong
    Jeon, Sun Seo
    Lee, Hyunjoo
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (18) : 9032 - 9038