LAGAN: Lesion-Aware Generative Adversarial Networks for Edema Area Segmentation in SD-OCT Images

被引:6
作者
Tao, Yuhui [1 ]
Ma, Xiao [1 ]
Zhang, Yizhe [1 ]
Huang, Kun [1 ]
Ji, Zexuan [1 ]
Fan, Wen [2 ]
Yuan, Songtao [2 ]
Chen, Qiang [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[2] Nanjing Med Univ, Dept Ophthalmol, Nanjing 210029, Peoples R China
基金
中国国家自然科学基金;
关键词
Edema area segmentation; generative adversarial network; lesion aware; SD-OCT; weakly-supervised learning; FLUID; QUANTIFICATION;
D O I
10.1109/JBHI.2023.3252665
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Large volume of labeled data is a cornerstone for deep learning (DL) based segmentation methods. Medical images require domain experts to annotate, and full segmentation annotations of large volumes of medical data are difficult, if not impossible, to acquire in practice. Compared with full annotations, image-level labels are multiple orders of magnitude faster and easier to obtain. Image-level labels contain rich information that correlates with the underlying segmentation tasks and should be utilized in modeling segmentation problems. In this article, we aim to build a robust DL-based lesion segmentation model using only image-level labels (normal v.s. abnormal). Our method consists of three main steps: (1) training an image classifier with image-level labels; (2) utilizing a model visualization tool to generate an object heat map for each training sample according to the trained classifier; (3) based on the generated heat maps (as pseudo-annotations) and an adversarial learning framework, we construct and train an image generator for Edema Area Segmentation (EAS). We name the proposed method Lesion-Aware Generative Adversarial Networks (LAGAN) as it combines the merits of supervised learning (being lesion-aware) and adversarial training (for image generation). Additional technical treatments, such as the design of a multi-scale patch-based discriminator, further enhance the effectiveness of our proposed method. We validate the superior performance of LAGAN via comprehensive experiments on two publicly available datasets (i.e., AI Challenger and RETOUCH).
引用
收藏
页码:2432 / 2443
页数:12
相关论文
共 52 条
[1]  
[Anonymous], About us
[2]   RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge [J].
Bogunovic, Hrvoje ;
Venhuizen, Freerk ;
Klimscha, Sophie ;
Apostolopoulos, Stefanos ;
Bab-Hadiashar, Alireza ;
Bagci, Ulas ;
Beg, Mirza Faisal ;
Bekalo, Loza ;
Chen, Qiang ;
Ciller, Carlos ;
Gopinath, Karthik ;
Gostar, Amirali K. ;
Jeon, Kiwan ;
Ji, Zexuan ;
Kang, Sung Ho ;
Koozekanani, Dara D. ;
Lu, Donghuan ;
Morley, Dustin ;
Parhi, Keshab K. ;
Park, Hyoung Suk ;
Rashno, Abdolreza ;
Sarunic, Marinko ;
Shaikh, Saad ;
Sivaswamy, Jayanthi ;
Tennakoon, Ruwan ;
Yadav, Shivin ;
De Zanet, Sandro ;
Waldstein, Sebastian M. ;
Gerendas, Bianca S. ;
Klaver, Caroline ;
Sanchez, Clara, I ;
Schmidt-Erfurth, Ursula .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) :1858-1874
[3]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[4]   Attention-GAN for Object Transfiguration in Wild Images [J].
Chen, Xinyuan ;
Xu, Chang ;
Yang, Xiaokang ;
Tao, Dacheng .
COMPUTER VISION - ECCV 2018, PT II, 2018, 11206 :167-184
[5]   An Improved MPB-CNN Segmentation Method for Edema Area and Neurosensory Retinal Detachment in SD-OCT Images [J].
Fang, Jian ;
Zhang, Yuhan ;
Xie, Keren ;
Yuan, Songtao ;
Chen, Qiang .
OPHTHALMIC MEDICAL IMAGE ANALYSIS, 2019, 11855 :130-138
[6]  
Fu H, 2019, PROC CVPR IEEE, P2422, DOI [10.1109/cvpr.2019.00253, 10.1109/CVPR.2019.00253]
[7]   Res2Net: A New Multi-Scale Backbone Architecture [J].
Gao, Shang-Hua ;
Cheng, Ming-Ming ;
Zhao, Kai ;
Zhang, Xin-Yu ;
Yang, Ming-Hsuan ;
Torr, Philip .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (02) :652-662
[8]   Improving Shape Deformation in Unsupervised Image-to-Image Translation [J].
Gokaslan, Aaron ;
Ramanujan, Vivek ;
Ritchie, Daniel ;
Kim, Kwang In ;
Tompkin, James .
COMPUTER VISION - ECCV 2018, PT XII, 2018, 11216 :662-678
[9]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[10]   Accurate Screening of COVID-19 Using Attention-Based Deep 3D Multiple Instance Learning [J].
Han, Zhongyi ;
Wei, Benzheng ;
Hong, Yanfei ;
Li, Tianyang ;
Cong, Jinyu ;
Zhu, Xue ;
Wei, Haifeng ;
Zhang, Wei .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (08) :2584-2594