A FULLY DISCRETE PLATES COMPLEX ON POLYGONAL MESHES WITH APPLICATION TO THE KIRCHHOFF-LOVE PROBLEM

被引:7
作者
Di Pietro, Daniele A. [1 ]
Droniou, Jerome [2 ]
机构
[1] Univ Montpellier, IMAG, CNRS, Montpellier, France
[2] Monash Univ, Sch Math, Melbourne, Australia
关键词
Discrete de Rham method; compatible discretisations; mixed formu-lation; plates complex; biharmonic equation; Kirchhoff-Love plates; HERRMANN-JOHNSON METHOD; FINITE-ELEMENT METHODS; MIXED METHODS; DECOMPOSITION RESULT; ELLIPTIC PROBLEMS; BENDING PROBLEMS; ARBITRARY-ORDER; DISCRETIZATION; DIFFUSION;
D O I
10.1090/mcom/3765
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we develop a novel fully discrete version of the plates complex, an exact Hilbert complex relevant for the mixed formulation of fourth-order problems. The derivation of the discrete complex follows the discrete de Rham paradigm, leading to an arbitrary-order construction that applies to meshes composed of general polygonal elements. The discrete plates complex is then used to derive a novel numerical scheme for Kirchhoff-Love plates, for which a full stability and convergence analysis are performed. Ex-tensive numerical tests complete the exposition.
引用
收藏
页码:51 / 77
页数:27
相关论文
共 42 条
[1]   The fully nonconforming virtual element method for biharmonic problems [J].
Antonietti, P. F. ;
Manzini, G. ;
Verani, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (02) :387-407
[2]   hp-VERSION COMPOSITE DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC PROBLEMS ON COMPLICATED DOMAINS [J].
Antonietti, Paola F. ;
Giani, Stefano ;
Houston, Paul .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (03) :A1417-A1439
[3]  
Arnold D. N., 2018, CBMS NSF REGIONAL C, V93, DOI 10.1137/1.9781611975543.ch1
[4]   MIXED AND NONCONFORMING FINITE-ELEMENT METHODS - IMPLEMENTATION, POSTPROCESSING AND ERROR-ESTIMATES [J].
ARNOLD, DN ;
BREZZI, F .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (01) :7-32
[5]   THE HELLAN-HERRMANN-JOHNSON METHOD WITH CURVED ELEMENTS [J].
Arnold, Douglas N. ;
Walker, Shawn W. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (05) :2829-2855
[6]   ANALYSIS OF MIXED METHODS USING MESH DEPENDENT NORMS [J].
BABUSKA, I ;
OSBORN, J ;
PITARANTA, J .
MATHEMATICS OF COMPUTATION, 1980, 35 (152) :1039-1062
[7]   On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations [J].
Bassi, F. ;
Botti, L. ;
Colombo, A. ;
Di Pietro, D. A. ;
Tesini, P. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (01) :45-65
[8]  
BLUM H, 1990, J COMPUT MATH, V8, P321
[9]  
Boffi Daniele., 2013, Mixed finite element methods and applications, DOI DOI 10.1007/978-3-642-36519-5
[10]   A HYBRID HIGH-ORDER METHOD FOR KIRCHHOFF LOVE PLATE BENDING PROBLEMS [J].
Bonaldi, Francesco ;
Di Pietro, Daniele A. ;
Geymonat, Giuseppe ;
Krasucki, Francoise .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (02) :393-421