Tryp: a dataset of microscopy images of unstained thick blood smears for trypanosome detection

被引:4
作者
Anzaku, Esla Timothy [1 ,2 ]
Mohammed, Mohammed Aliy [3 ,4 ]
Ozbulak, Utku [1 ]
Won, Jongbum [1 ]
Hong, Hyesoo [1 ]
Krishnamoorthy, Janarthanan [4 ]
Van Hoecke, Sofie [3 ]
Magez, Stefan [5 ,6 ,7 ]
Van Messem, Arnout [8 ]
De Neve, Wesley [1 ,2 ]
机构
[1] Univ Ghent, Ctr Biosyst & Biotech Data Sci, Global Campus, Incheon 21985, South Korea
[2] Univ Ghent, IDLab, Technologiepk Zwijnaarde 126, B-9052 Ghent, Belgium
[3] Ghent Univ imec, IDLab, Technologiepk Zwijnaarde 126, B-9052 Ghent, Belgium
[4] Jimma Univ, Jimma Inst Technol, Sch Biomed Engn, Jimma, Ethiopia
[5] Univ Ghent, Biomed Res Ctr, Global Campus, Incheon 21985, South Korea
[6] Vrije Univ Brussel, Lab Cellular & Mol Immunol, Brussels, Belgium
[7] Univ Ghent, Dept Biochem & Microbiol, Ghent, Belgium
[8] Univ Liege, B-4000 Liege, Belgium
关键词
D O I
10.1038/s41597-023-02608-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Trypanosomiasis, a neglected tropical disease (NTD), challenges communities in sub-Saharan Africa and Latin America. The World Health Organization underscores the need for practical, field-adaptable diagnostics and rapid screening tools to address the negative impact of NTDs. While artificial intelligence has shown promising results in disease screening, the lack of curated datasets impedes progress. In response to this challenge, we developed the Tryp dataset, comprising microscopy images of unstained thick blood smears containing the Trypanosoma brucei brucei parasite. The Tryp dataset provides bounding box annotations for tightly enclosed regions containing the parasite for 3,085 positive images, and 93 images collected from negative blood samples. The Tryp dataset represents the largest of its kind. Furthermore, we provide a benchmark on three leading deep learning-based object detection techniques that demonstrate the feasibility of AI for this task. Overall, the availability of the Tryp dataset is expected to facilitate research advancements in diagnostic screening for this disease, which may lead to improved healthcare outcomes for the communities impacted.
引用
收藏
页数:12
相关论文
共 34 条
[1]  
Anzaku TE., 2023, Figshare, DOI [10.6084/m9.figshare.22825787, DOI 10.6084/M9.FIGSHARE.22825787]
[2]   Recognition in Terra Incognita [J].
Beery, Sara ;
Van Horn, Grant ;
Perona, Pietro .
COMPUTER VISION - ECCV 2018, PT XVI, 2018, 11220 :472-489
[3]   Debiasing Skin Lesion Datasets and Models? Not So Fast [J].
Bissoto, Alceu ;
Valle, Eduardo ;
Avila, Sandra .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, :3192-3201
[4]  
Buscher P., 2014, Trypanosomes and Trypanosomiasis, DOI [10.1007/978-3-7091-1556-5_8, DOI 10.1007/978-3-7091-1556-5_8]
[5]  
Büscher P, 2017, LANCET, V390, P2397, DOI [10.1016/S0140-6736(09)60829-1, 10.1016/S0140-6736(17)31510-6, 10.1016/S0140-6736(25)00107-2]
[6]   Automatic detection of the parasite Trypanosoma cruzi in blood smears using a machine learning approach applied to mobile phone images [J].
Cafundo Morais, Mauro Cesar ;
Silva, Diogo ;
Milagre, Matheus Marques ;
de Oliveira, Maykon Tavares ;
Pereira, Thais ;
Silva, Joao Santana ;
Costa, Luciano da F. ;
Minoprio, Paola ;
Cesar Junior, Roberto Marcondes ;
Gazzinelli, Ricardo ;
de Lana, Marta ;
Nakaya, Helder, I .
PEERJ, 2022, 10
[7]   AI for radiographic COVID-19 detection selects shortcuts over signal [J].
DeGrave, Alex J. ;
Janizek, Joseph D. ;
Lee, Su-In .
NATURE MACHINE INTELLIGENCE, 2021, 3 (07) :610-619
[8]  
Desquesnes M., 2022, A review on the diagnosis of animal trypanosomoses, DOI [10.1186/s13071-022-05190-1, DOI 10.1186/S13071-022-05190-1]
[9]   Neglected tropical diseases [J].
Feasey, Nick ;
Wansbrough-Jones, Mark ;
Mabey, David C. W. ;
Solomon, Anthony W. .
BRITISH MEDICAL BULLETIN, 2010, 93 (01) :179-200
[10]  
Fried L, 2020, J AM ACAD DERMATOL, V83, P983, DOI 10.1016/j.jaad.2020.03.121