Doppler Image-Based Weakly-Supervised Vascular Ultrasound Segmentation with Transformer

被引:2
作者
Ning, Guochen [1 ]
Liang, Hanying [1 ]
Chen, Fang [2 ]
Zhang, Xinran [1 ]
Liao, Hongen [1 ]
机构
[1] Tsinghua Univ, Dept Biomed Engn, Beijing, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Comp Sci & Engn, Nanjing, Peoples R China
来源
2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI | 2023年
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Ultrasound Image Segmentation; Weakly-supervised Segmentation; Doppler image; Transformer;
D O I
10.1109/ISBI53787.2023.10230548
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vascular segmentation in ultrasound (US) images faces labor-intensive labeling procedures and performance degradation due to unsatisfied image quality. Herein, we propose to use the Doppler image for vascular segmentation with an incremental Transformer structure. First, local features within the image patch are extracted by a convolutional neural network (CNN) patch embedding layer and further encoded by a multi-level Transformer to enhance the global dependencies from coarse to fine. A multi-level CNN decoder is introduced to decode corresponding features. Doppler imaging is capable of blood visualization and indicating the positional and structural information used as the pseudo label. A conditional random field (CRF) module and shape similarity loss function are introduced to improve the effectiveness of the Doppler images. The segmentation accuracy of the radial artery and carotid artery datasets can achieve 78.8% and 81.9% in Dice, with 63.5% and 53.7% accuracy in noisy labels. In addition, the framework can be generalized to unseen data without related Doppler images.
引用
收藏
页数:5
相关论文
共 24 条
[1]   Uncertainty Aware Temporal-Ensembling Model for Semi-Supervised ABUS Mass Segmentation [J].
Cao, Xuyang ;
Chen, Houjin ;
Li, Yanfeng ;
Peng, Yahui ;
Wang, Shu ;
Cheng, Lin .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (01) :431-443
[2]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[3]   A Generalized Approach for Automatic 3-D Geometry Assessment of Blood Vessels in Transverse Ultrasound Images Using Convolutional Neural Networks [J].
de Ruijter, Joerik ;
Muijsers, Judith J. M. ;
van de Vosse, Frans N. ;
van Sambeek, Marc R. H. M. ;
Lopata, Richard G. P. .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2021, 68 (11) :3326-3335
[4]  
Dosovitskiy A., 2021, 2021 INT C LEARN REP, P2021
[5]  
Enze X., 2021, 2021 C WORKSH NEUR I
[6]   SOTR: Segmenting Objects with Transformers [J].
Guo, Ruohao ;
Niu, Dantong ;
Qu, Liao ;
Li, Zhenbo .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :7137-7146
[7]   Segmentation of breast ultrasound image with semantic classification of superpixels [J].
Huang, Qinghua ;
Huang, Yonghao ;
Luo, Yaozhong ;
Yuan, Feiniu ;
Li, Xuelong .
MEDICAL IMAGE ANALYSIS, 2020, 61
[8]   Seed, Expand and Constrain: Three Principles for Weakly-Supervised Image Segmentation [J].
Kolesnikov, Alexander ;
Lampert, Christoph H. .
COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 :695-711
[9]  
Krahenbuhl P., 2011, NIPS, DOI DOI 10.48550/ARXIV.1210.5644
[10]   A Convolutional Neural Network for Automatic Characterization of Plaque Composition in Carotid Ultrasound [J].
Lekadir, Karim ;
Galimzianova, Alfiia ;
Betriu, Angels ;
del Mar Vila, Maria ;
Igual, Laura ;
Rubin, Daniel L. ;
Fernandez, Elvira ;
Radeva, Petia ;
Napel, Sandy .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2017, 21 (01) :48-55