Spatial-Temporal Correlation Considering Environmental Factor Fusion for Estimating Gross Primary Productivity in Tibetan Grasslands

被引:3
作者
Yang, Qinmeng [1 ]
Nie, Ningming [1 ,2 ]
Wang, Yangang [1 ,2 ]
Wu, Xiaojing [3 ,4 ]
Liu, Weihua [2 ,3 ,4 ]
Ren, Xiaoli [3 ,4 ]
Wang, Zijian [1 ]
Wan, Meng [1 ]
Cao, Rongqiang [1 ,2 ]
机构
[1] Chinese Acad Sci, Comp Network Informat Ctr, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Beijing 100101, Peoples R China
[4] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Natl Ecosyst Sci Data Ctr, Beijing 100101, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 10期
关键词
deep learning; GeoMAN model; gross primary productivity; attention mechanism; interdisciplinary; LIGHT USE EFFICIENCY; MODIS;
D O I
10.3390/app13106290
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Gross primary productivity (GPP) is an important indicator in research on carbon cycling in terrestrial ecosystems. High-accuracy GPP prediction is crucial for ecosystem health and climate change assessments. We developed a site-level GPP prediction method based on the GeoMAN model, which was able to extract spatiotemporal features and fuse external environmental factors to predict GPP on the Tibetan Plateau. We evaluated four models' behavior-Random Forest (RF), Support Vector Machine (SVM), Deep Belief Network (DBN), and GeoMAN-in predicting GPP at nine flux observation sites on the Tibetan Plateau. The GeoMAN model achieved the best results (R-2 = 0.870, RMSE = 0.788 g Cm-2 d(-1), MAE = 0.440 g Cm-2 d(-1)). Distance and vegetation type of the flux sites influenced GPP prediction, with the latter being more significant. The different grassland vegetation types exhibited different sensitivity to environmental factors (Ta, PAR, EVI, NDVI, and LSWI) for GPP prediction. Among them, the site located in the alpine swamp meadow was insensitive to changes in environmental factors; the GPP prediction accuracy of the site located in the alpine meadow steppe decreased significantly with the changes in environmental factors; and the GPP prediction accuracy of the site located in the alpine Kobresia meadow also varied with environmental factor changes, but to a lesser extent than the former. This study provides a good reference that deep learning model is able to achieve good accuracy in GPP simulation when considers spatial, temporal, and environmental factors, and the judgement made by deep learning model conforms to basic knowledge in the relevant field.
引用
收藏
页数:19
相关论文
共 39 条
[1]  
[Anonymous], 1988, VEGETATION XIZANG
[2]   Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate [J].
Beer, Christian ;
Reichstein, Markus ;
Tomelleri, Enrico ;
Ciais, Philippe ;
Jung, Martin ;
Carvalhais, Nuno ;
Roedenbeck, Christian ;
Arain, M. Altaf ;
Baldocchi, Dennis ;
Bonan, Gordon B. ;
Bondeau, Alberte ;
Cescatti, Alessandro ;
Lasslop, Gitta ;
Lindroth, Anders ;
Lomas, Mark ;
Luyssaert, Sebastiaan ;
Margolis, Hank ;
Oleson, Keith W. ;
Roupsard, Olivier ;
Veenendaal, Elmar ;
Viovy, Nicolas ;
Williams, Christopher ;
Woodward, F. Ian ;
Papale, Dario .
SCIENCE, 2010, 329 (5993) :834-838
[3]   A Satellite-Based Model for Simulating Ecosystem Respiration in the Tibetan and Inner Mongolian Grasslands [J].
Ge, Rong ;
He, Honglin ;
Ren, Xiaoli ;
Zhang, Li ;
Li, Pan ;
Zeng, Na ;
Yu, Guirui ;
Zhang, Liyun ;
Yu, Shi-Yong ;
Zhang, Fawei ;
Li, Hongqin ;
Shi, Peili ;
Chen, Shiping ;
Wang, Yanfen ;
Xin, Xiaoping ;
Ma, Yaoming ;
Ma, Mingguo ;
Zhang, Yu ;
Du, Mingyuan .
REMOTE SENSING, 2018, 10 (01)
[4]   Overview of the radiometric and biophysical performance of the MODIS vegetation indices [J].
Huete, A ;
Didan, K ;
Miura, T ;
Rodriguez, EP ;
Gao, X ;
Ferreira, LG .
REMOTE SENSING OF ENVIRONMENT, 2002, 83 (1-2) :195-213
[5]   New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression [J].
Ichii, Kazuhito ;
Ueyama, Masahito ;
Kondo, Masayuki ;
Saigusa, Nobuko ;
Kim, Joon ;
Carmelita Alberto, Ma. ;
Ardoe, Jonas ;
Euskirchen, Eugenie S. ;
Kang, Minseok ;
Hirano, Takashi ;
Joiner, Joanna ;
Kobayashi, Hideki ;
Marchesini, Luca Belelli ;
Merbold, Lutz ;
Miyata, Akira ;
Saitoh, Taku M. ;
Takagi, Kentaro ;
Varlagin, Andrej ;
Bret-Harte, M. Syndonia ;
Kitamura, Kenzo ;
Kosugi, Yoshiko ;
Kotani, Ayumi ;
Kumar, Kireet ;
Li, Sheng-Gong ;
Machimura, Takashi ;
Matsuura, Yojiro ;
Mizoguchi, Yasuko ;
Ohta, Takeshi ;
Mukherjee, Sandipan ;
Yanagi, Yuji ;
Yasuda, Yukio ;
Zhang, Yiping ;
Zhao, Fenghua .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2017, 122 (04) :767-795
[6]   An Artificial Intelligence Approach to Predict Gross Primary Productivity in the Forests of South Korea Using Satellite Remote Sensing Data [J].
Lee, Bora ;
Kim, Nari ;
Kim, Eun-Sook ;
Jang, Keunchang ;
Kang, Minseok ;
Lim, Jong-Hwan ;
Cho, Jaeil ;
Lee, Yangwon .
FORESTS, 2020, 11 (09)
[7]   Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design [J].
Li, Xin ;
Cheng, Guodong ;
Liu, Shaomin ;
Xiao, Qing ;
Ma, Mingguo ;
Jin, Rui ;
Che, Tao ;
Liu, Qinhuo ;
Wang, Weizhen ;
Qi, Yuan ;
Wen, Jianguang ;
Li, Hongyi ;
Zhu, Gaofeng ;
Guo, Jianwen ;
Ran, Youhua ;
Wang, Shuoguo ;
Zhu, Zhongli ;
Zhou, Jian ;
Hu, Xiaoli ;
Xu, Ziwei .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2013, 94 (08) :1145-1160
[8]  
Liang YX, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P3428
[9]   Spatiotemporal Changes and Driver Analysis of Ecosystem Respiration in the Tibetan and Inner Mongolian Grasslands [J].
Liu, Weihua ;
He, Honglin ;
Wu, Xiaojing ;
Ren, Xiaoli ;
Zhang, Li ;
Zhu, Xiaobo ;
Feng, Lili ;
Lv, Yan ;
Chang, Qingqing ;
Xu, Qian ;
Zhang, Mengyu ;
Zhang, Yonghong ;
Wang, Tianxiang .
REMOTE SENSING, 2022, 14 (15)
[10]   Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China [J].
Ma, Mingguo ;
Veroustraete, Frank .
NATURAL HAZARDS AND OCEANOGRAPHIC PROCESSES FROM SATELLITE DATA, 2006, 37 (04) :835-840