Artificial intelligence in bone marrow histological diagnostics: potential applications and challenges

被引:5
作者
van Eekelen, Leander [1 ,2 ]
Litjens, Geert [1 ,2 ]
Hebeda, Konnie [1 ,3 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Dept Pathol, Nijmegen, Netherlands
[2] Radboud Univ Nijmegen, Radboud Inst Hlth Sci, Med Ctr, Computat Pathol Grp, Nijmegen, Netherlands
[3] Radboud Univ Nijmegen, Med Ctr, Dept Pathol, Geert Grootepl Zuid 10, NL-6500 HB Nijmegen, Netherlands
基金
欧洲研究理事会;
关键词
CUP-LIKE NUCLEI; FEATURES; ASSOCIATION; AGE;
D O I
10.1159/000529701
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The expanding digitalization of routine diagnostic histological slides holds a potential to apply artificial intelligence (AI) to pathology, including bone marrow (BM) histology. In this perspective we describe potential tasks in diagnostics that can be supported, investigations that can be guided and questions that can be answered by the future application of AI on whole slide images of BM biopsies. These range from characterization of cell lineages and quantification of cells and stromal structures to disease prediction. First glimpses show an exciting potential to detect subtle phenotypic changes with AI that are due to specific genotypes. The discussion is illustrated by examples of current AI research using BM biopsy slides. In addition, we briefly discuss current challenges for implementation of AI-supported diagnostics.
引用
收藏
页码:8 / 17
页数:10
相关论文
共 62 条
[11]   Integrating artificial intelligence in pathology: a qualitative interview study of users' experiences and expectations [J].
Drogt, Jojanneke ;
Milota, Megan ;
Vos, Shoko ;
Bredenoord, Annelien ;
Jongsma, Karin .
MODERN PATHOLOGY, 2022, 35 (11) :1540-1550
[12]   Deep learning identifies Acute Promyelocytic Leukemia in bone marrow smears [J].
Eckardt, Jan-Niklas ;
Schmittmann, Tim ;
Riechert, Sebastian ;
Kramer, Michael ;
Sulaiman, Anas Shekh ;
Sockel, Katja ;
Kroschinsky, Frank ;
Schetelig, Johannes ;
Wagenfuehr, Lisa ;
Schuler, Ulrich ;
Platzbecker, Uwe ;
Thiede, Christian ;
Stoelzel, Friedrich ;
Roellig, Christoph ;
Bornhaeuser, Martin ;
Wendt, Karsten ;
Middeke, Jan Moritz .
BMC CANCER, 2022, 22 (01)
[13]   Deep learning detects acute myeloid leukemia and predicts NPM1 mutation status from bone marrow smears [J].
Eckardt, Jan-Niklas ;
Middeke, Jan Moritz ;
Riechert, Sebastian ;
Schmittmann, Tim ;
Sulaiman, Anas Shekh ;
Kramer, Michael ;
Sockel, Katja ;
Kroschinsky, Frank ;
Schuler, Ulrich ;
Schetelig, Johannes ;
Roellig, Christoph ;
Thiede, Christian ;
Wendt, Karsten ;
Bornhaeuser, Martin .
LEUKEMIA, 2022, 36 (01) :111-118
[14]   Artificial Intelligence and Digital Microscopy Applications in Diagnostic Hematopathology [J].
El Achi, Hanadi ;
Khoury, Joseph D. .
CANCERS, 2020, 12 (04)
[15]  
Fu Fred, 2022, J Pathol Inform, V13, P100011, DOI 10.1016/j.jpi.2022.100011
[16]   Automated Peripheral Blood Cell Differentiation Using Artificial Intelligence - a Study with More Than 10,000 Routine Samples in a Specialized Leukemia Laboratory [J].
Haferlach, Torsten ;
Pohlkamp, Christian ;
Heo, Inseok ;
Drescher, Rudolf ;
Haenselmann, Siegfried ;
Loerch, Thomas ;
Kern, Wolfgang ;
Haferlach, Claudia ;
Nadarajah, Niroshan .
BLOOD, 2021, 138
[17]   Histopathologic and Machine Deep Learning Criteria to Predict Lymphoma Transformation in Bone Marrow Biopsies [J].
Irshaid, Lina ;
Bleiberg, Jonathan ;
Weinberger, Ethan ;
Garritano, James ;
Shallis, Rory M. ;
Patsenker, Jonathan ;
Lindenbaum, Ofir ;
Kluger, Yuval ;
Katz, Samuel G. ;
Xu, Mina L. .
ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2022, 146 (02) :182-193
[18]   Closing the Gap Between Machine Learning and Clinical Cancer Care-First Steps Into a Larger World [J].
Kang, John ;
Morin, Olivier ;
Hong, Julian C. .
JAMA ONCOLOGY, 2020, 6 (11) :1731-1732
[19]   Artificial intelligence for clinical oncology [J].
Kann, Benjamin H. ;
Hosny, Ahmed ;
Aerts, Hugo J. W. L. .
CANCER CELL, 2021, 39 (07) :916-927
[20]   History of artificial intelligence in medicine [J].
Kaul, Vivek ;
Enslin, Sarah ;
Gross, Seth A. .
GASTROINTESTINAL ENDOSCOPY, 2020, 92 (04) :807-812