Artificial intelligence in bone marrow histological diagnostics: potential applications and challenges

被引:5
作者
van Eekelen, Leander [1 ,2 ]
Litjens, Geert [1 ,2 ]
Hebeda, Konnie [1 ,3 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Dept Pathol, Nijmegen, Netherlands
[2] Radboud Univ Nijmegen, Radboud Inst Hlth Sci, Med Ctr, Computat Pathol Grp, Nijmegen, Netherlands
[3] Radboud Univ Nijmegen, Med Ctr, Dept Pathol, Geert Grootepl Zuid 10, NL-6500 HB Nijmegen, Netherlands
基金
欧洲研究理事会;
关键词
CUP-LIKE NUCLEI; FEATURES; ASSOCIATION; AGE;
D O I
10.1159/000529701
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The expanding digitalization of routine diagnostic histological slides holds a potential to apply artificial intelligence (AI) to pathology, including bone marrow (BM) histology. In this perspective we describe potential tasks in diagnostics that can be supported, investigations that can be guided and questions that can be answered by the future application of AI on whole slide images of BM biopsies. These range from characterization of cell lineages and quantification of cells and stromal structures to disease prediction. First glimpses show an exciting potential to detect subtle phenotypic changes with AI that are due to specific genotypes. The discussion is illustrated by examples of current AI research using BM biopsy slides. In addition, we briefly discuss current challenges for implementation of AI-supported diagnostics.
引用
收藏
页码:8 / 17
页数:10
相关论文
共 62 条
[1]   Digital pathology: current status and future perspectives [J].
Al-Janabi, Shaimaa ;
Huisman, Andre ;
Van Diest, Paul J. .
HISTOPATHOLOGY, 2012, 61 (01) :1-9
[2]   Evaluation of an open-source machine-learning tool to quantify bone marrow plasma cells [J].
Baranova, Katherina ;
Tran, Christopher ;
Plantinga, Paul ;
Sangle, Nikhil .
JOURNAL OF CLINICAL PATHOLOGY, 2021, 74 (07) :462-468
[3]   Is the Association of "Cup-like" Nuclei With Mutation of the NPM1 Gene in Acute Myeloid Leukemia Clinically Useful? [J].
Bennett, John M. ;
Pryor, Jennifer ;
Laughlin, Todd S. ;
Rothberg, Paul G. ;
Burack, W. Richard .
AMERICAN JOURNAL OF CLINICAL PATHOLOGY, 2010, 134 (04) :648-652
[4]  
Bingham David, 2020, Intell Med, V1
[5]   Immune profiles in acute myeloid leukemia bone marrow associate with patient age, T-cell receptor clonality, and survival [J].
Bruck, Oscar ;
Dufva, Olli ;
Hohtari, Helena ;
Blom, Sami ;
Turkki, Riku ;
Ilander, Mette ;
Kovanen, Panu ;
Pallaud, Celine ;
Ramos, Pedro Marques ;
Lahteenmaki, Hanna ;
Valimaki, Katja ;
El Missiry, Mohamed ;
Ribeiro, Antonio ;
Kallioniemi, Olli ;
Porkka, Kimmo ;
Pellinen, Teijo ;
Mustjoki, Satu .
BLOOD ADVANCES, 2020, 4 (02) :274-286
[6]   Machine Learning of Bone Marrow Histopathology Identifies Genetic and Clinical Determinants in Patients with MDS [J].
Bruck, Oscar E. ;
Lallukka-Bruck, Susanna E. ;
Hohtari, Helena R. ;
Ianevski, Aleksandr ;
Ebeling, Freja T. ;
Kovanen, Panu E. ;
Kytola, Soili, I ;
Aittokallio, Tero A. ;
Ramos, Pedro M. ;
Porkka, Kimmo, V ;
Mustjoki, Satu M. .
BLOOD CANCER DISCOVERY, 2021, 2 (03) :238-249
[7]  
Buhr T, 2012, HAEMATOL-HEMATOL J, V97, P360, DOI 10.3324/haematol.2011.047811
[8]   Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by pathologists [J].
Bulten, Wouter ;
Balkenhol, Maschenka ;
Belinga, Jean-Joel Awoumou ;
Brilhante, Americo ;
Cakir, Asli ;
Egevad, Lars ;
Eklund, Martin ;
Farre, Xavier ;
Geronatsiou, Katerina ;
Molinie, Vincent ;
Pereira, Guilherme ;
Roy, Paromita ;
Saile, Gunter ;
Salles, Paulo ;
Schaafsma, Ewout ;
Tschui, Joelle ;
Vos, Anne-Marie ;
van Boven, Hester ;
Vink, Robert ;
van der Laak, Jeroen ;
Hulsbergen-van der Kaa, Christina ;
Litjens, Geert .
MODERN PATHOLOGY, 2021, 34 (03) :660-671
[9]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[10]   Clinical Trials for Artificial Intelligence in Cancer Diagnosis: A Cross-Sectional Study of Registered Trials inClinicalTrials.gov [J].
Dong, Jingsi ;
Geng, Yingcai ;
Lu, Dan ;
Li, Bingjie ;
Tian, Long ;
Lin, Dan ;
Zhang, Yonggang .
FRONTIERS IN ONCOLOGY, 2020, 10