Characterization of the Variation Spaces Corresponding to Shallow Neural Networks

被引:9
作者
Siegel, Jonathan W. W. [1 ]
Xu, Jinchao [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Function space; Neural networks; Approximation; FEEDFORWARD NETWORKS; APPROXIMATION; CONVERGENCE; BOUNDS; RATES;
D O I
10.1007/s00365-023-09626-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the variation space corresponding to a dictionary of functions in L-2(omega) for a bounded domain omega c R-d. Specifically, we compare the variation space, which is defined in terms of a convex hull with related notions based on integral representations. This allows us to show that three important notions relating to the approximation theory of shallow neural networks, the Barron space, the spectral Barron space, and the Radon BV space, are actually variation spaces with respect to certain natural dictionaries.
引用
收藏
页码:1109 / 1132
页数:24
相关论文
共 40 条
[1]  
[Anonymous], 1938, REC MATH
[2]   Approximation and learning by greedy algorithms [J].
Barron, Andrew R. ;
Cohen, Albert ;
Dahmen, Wolfgang ;
DeVore, Ronald A. .
ANNALS OF STATISTICS, 2008, 36 (01) :64-94
[3]   UNIVERSAL APPROXIMATION BOUNDS FOR SUPERPOSITIONS OF A SIGMOIDAL FUNCTION [J].
BARRON, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) :930-945
[4]  
DeVore R. A., 1998, Acta Numerica, V7, P51, DOI 10.1017/S0962492900002816
[5]   Some remarks on greedy algorithms [J].
DeVore, RA ;
Temlyakov, VN .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (2-3) :173-187
[6]  
Diestel J., 2012, Sequences and Series in Banach Spaces, V92
[7]  
Dudley R, 2018, Real Analysis and Probability
[8]  
E W., 2019, ARXIV
[9]  
Evans L.C., 2015, Textbooks in Mathematics
[10]  
Hao W., 2021, ARXIV