Hop total Roman domination in graphs

被引:3
作者
Abdollahzadeh Ahangar, H. [1 ,4 ]
Chellali, M. [2 ]
Sheikholeslami, S. M. [3 ]
Soroudi, M. [3 ]
机构
[1] Babol Noshirvani Univ Technol, Dept Math, Babol, Iran
[2] Univ Blida, Dept Math, LAMDA RO Lab, Blida, Algeria
[3] Azarbaijan Shahid Madani Univ, Dept Math, R Iran, Tabriz, Iran
[4] Babol Noshirvani Univ Technol, Dept Math, Shariati Ave, Babol 4714871167, Iran
关键词
Hop total Roman domination; hop total domination number; hop Roman domination number;
D O I
10.1080/09728600.2023.2184288
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we initiate a study of hop total Roman domination defined as follows: a hop total Roman dominating function (HTRDF) on a graph G=(V,E) is a function f:V?{0,1,2} such that for every vertex u with f(u) = 0 there exists a vertex v at distance 2 from u with f(v) = 2 and the subgraph induced by the vertices assigned non-zero values under f has no isolated vertices. The weight of an HTRDF is the sum of its function values over all vertices, and the hop total Roman domination number ?dtR(G) equals the minimum weight of an HTRDF on G. We provide several properties on the hop total Roman domination number. More precisely, we show that the decision problem corresponding to the hop total Roman domination problem is NP-complete for bipartite graphs, and we determine the exact value of ?(htR)(G) for paths and cycles. Moreover, we characterize all connected graphs G of order n with ?(htR)(G?{2,3,4,n}. Finally, we show that for every tree T of diameter at least 3, ?(htR)(T=?(ht)(T)+2, where ?ht(T) is the hop total domination number.
引用
收藏
页码:73 / 78
页数:6
相关论文
共 7 条
[1]   Bounds on the hop domination number of a tree [J].
Ayyaswamy, S. K. ;
Krishnakumari, B. ;
Natarajan, C. ;
Venkatakrishnan, Y. B. .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2015, 125 (04) :449-455
[2]   Roman domination in graphs [J].
Cockayne, EJ ;
Dreyer, PA ;
Hedetniemi, SM ;
Hedetniemi, ST .
DISCRETE MATHEMATICS, 2004, 278 (1-3) :11-22
[3]   On 2-Step and Hop Dominating Sets in Graphs [J].
Henning, Michael A. ;
Rad, Nader Jafari .
GRAPHS AND COMBINATORICS, 2017, 33 (04) :913-927
[4]   Hop Domination in Graphs-II [J].
Natarajan, C. ;
Ayyaswamy, S. K. .
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2015, 23 (02) :187-199
[5]  
Rad N.J., 2019, Communications in Combinatorics and Optimization, V4, P201
[6]   On the complexity of some hop domination parameters [J].
Rad, Nader Jafari ;
Shabani, Elahe .
ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2019, 7 (01) :77-89
[7]  
Shabani E, 2019, COMPUT SCI J MOLD, V27, P3