Fuel compression in the magnetized cylindrical implosion driven by a gold tube heated by heavy ion beams

被引:0
作者
Liu, Bo [1 ]
Wang, Fangping [1 ]
Zhang, Heng [1 ]
Zhang, Sheng [2 ]
Duan, Wenshan [1 ]
机构
[1] Northwest Normal Univ, Coll Phys & Elect Engn, Lanzhou 730070, Peoples R China
[2] Adv Energy Sci & Technol Guangdong Lab, Huizhou 516006, Peoples R China
基金
中国国家自然科学基金;
关键词
high energy density; heavy ions beam; magnetohydrodynamic (MHD) simulation; INERTIAL-CONFINEMENT FUSION; IGNITION CONDITIONS; FUTURE CENTURIES; ENERGY; POWER; PROSPECTS; TARGETS; PHYSICS; MATTER; GAIN;
D O I
10.1088/2058-6272/ac9aed
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A magnetized cylindrical target composed of a gold tube filled with deuterium-tritium fuel plasma at low density is studied numerically in the present paper. A shock wave is produced when a heavy ion beam heats the gold along the direction of the magnetic field. The density peak of the shock wave increases with the increase in time and it propagates in the -r direction in the cylindrical tube. It seems that this wave is the supermagnetosonic wave. It is found that the Mach number M is between 6.96 and 19.19. The density peak of the shock wave increases as the intensity of the heavy ion beam increases. Furthermore, the density peak of the shock wave increases as the external magnetic field increases.
引用
收藏
页数:8
相关论文
共 67 条
[21]   National direct-drive program on OMEGA and the National Ignition Facility [J].
Goncharov, V. N. ;
Regan, S. P. ;
Campbell, E. M. ;
Sangster, T. C. ;
Radha, P. B. ;
Myatt, J. F. ;
Froula, D. H. ;
Betti, R. ;
Boehly, T. R. ;
Delettrez, J. A. ;
Edgell, D. H. ;
Epstein, R. ;
Forrest, C. J. ;
Glebov, V. Yu ;
Harding, D. R. ;
Hu, S. X. ;
Igumenshchev, I. V. ;
Marshall, F. J. ;
McCrory, R. L. ;
Michel, D. T. ;
Seka, W. ;
Shvydky, A. ;
Stoeckl, C. ;
Theobald, W. ;
Gatu-Johnson, M. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (01)
[22]   A review of the dense Z-pinch [J].
Haines, M. G. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (09)
[23]   Inertial fusion research in China [J].
He, X. T. ;
Zhang, W. Y. .
EUROPEAN PHYSICAL JOURNAL D, 2007, 44 (02) :227-231
[24]   Particle accelerator physics and technology for high energy density physics research [J].
Hoffmann, D. H. H. ;
Blazevic, A. ;
Rosmej, O. N. ;
Spiller, P. ;
Tahir, N. A. ;
Weyrich, K. ;
Dafni, T. ;
Kuster, M. ;
Ni, P. ;
Roth, M. ;
Udrea, S. ;
Varentsov, D. ;
Jacoby, J. ;
Kain, V. ;
Schmidt, R. ;
Zioutas, K. ;
Mintsev, V. ;
Fortov, V. E. ;
Sharkov, B. Yu. .
EUROPEAN PHYSICAL JOURNAL D, 2007, 44 (02) :293-300
[25]   Review of accelerator driven heavy ion nuclear fusion [J].
Hofmann, Ingo .
MATTER AND RADIATION AT EXTREMES, 2018, 3 (01) :1-11
[26]   Three-dimensional modeling of direct-drive cryogenic implosions on OMEGA [J].
Igumenshchev, I. V. ;
Goncharov, V. N. ;
Marshall, F. J. ;
Knauer, J. P. ;
Campbell, E. M. ;
Forrest, C. J. ;
Froula, D. H. ;
Glebov, V. Yu. ;
McCrory, R. L. ;
Regan, S. P. ;
Sangster, T. C. ;
Skupsky, S. ;
Stoeckl, C. .
PHYSICS OF PLASMAS, 2016, 23 (05)
[27]   Intensification of laser-produced relativistic electron beam using converging magnetic fields for ignition in fast ignition laser fusion [J].
Johzaki, Tomoyuki ;
Hino, Masaya ;
Horio, Mie ;
Takeda, Shijuro ;
Kim, Wookyung ;
Endo, Takuma ;
Fujioka, Shinsuke ;
Sentoku, Yasuhiko ;
Nagatomo, Hideo ;
Sunahara, Atsushi .
HIGH ENERGY DENSITY PHYSICS, 2020, 36
[28]   Review of heavy-ion inertial fusion physics [J].
Kawata, S. ;
Karino, T. ;
Ogoyski, A. I. .
MATTER AND RADIATION AT EXTREMES, 2016, 1 (02) :89-113
[29]   Direct-drive heavy ion beam inertial confinement fusion: a review, toward our future energy source [J].
Kawata, Shigeo .
ADVANCES IN PHYSICS-X, 2021, 6 (01)
[30]  
Kemp A J, 2001, MAGNETIZED CYLINDRIC