ON THE ZAGREB INDEX OF TOURNAMENTS

被引:0
作者
Naikoo, Tariq Ahmad [1 ]
Rather, Bilal Ahmad [2 ]
Samee, Uma Tul [3 ]
Pirzada, Shariefuddin [3 ]
机构
[1] Islamia Coll Sci & Commerce, Dept Math, Srinagar, Kashmir, India
[2] Univ Kashmir, Dept Math, Srinagar, Kashmir, India
[3] Univ Kashmir, Inst Technol, Srinagar, Kashmir, India
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2024年 / 48卷 / 02期
关键词
Tournament; score; score sequence; Zagreb index; Landau's theorem; SCORES;
D O I
10.46793/KgJMat2402.241N
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A tournament is an orientation of a complete simple graph. The score of a vertex in a tournament is the out degree of the vertex. The Zagreb index of a tournament is defined as the sum of the squares of the scores of its vertices. In this paper, we obtain various lower and upper bounds for the Zagreb index of a tournament.
引用
收藏
页码:241 / 253
页数:13
相关论文
共 13 条
[1]  
[Anonymous], 1968, Topics on Tournaments
[2]  
Borovicanin B, 2017, MATCH-COMMUN MATH CO, V78, P17
[3]   Landau's inequalities for tournament scores and a short proof of a theorem on transitive sub-tournaments [J].
Brualdi, RA ;
Shen, J .
JOURNAL OF GRAPH THEORY, 2001, 38 (04) :244-254
[4]  
Griggs J.R., 1999, Australasian J. Combin., V20, P19
[5]   GRAPH THEORY AND MOLECULAR-ORBITALS - TOTAL PI-ELECTRON ENERGY OF ALTERNANT HYDROCARBONS [J].
GUTMAN, I ;
TRINAJSTIC, N .
CHEMICAL PHYSICS LETTERS, 1972, 17 (04) :535-538
[6]  
Landau H. G., 1953, Bull. Math. Biophys, V15, P143
[7]   On scores in tournaments [J].
Naikoo, T. A. .
ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2018, 10 (02) :257-267
[8]  
Pirzada S, 2008, MAT VESTN, V60, P187
[9]  
Pirzada S, 2017, ACTA U SAPIENTIAE-MA, V9, P213, DOI 10.1515/ausm-2017-0014
[10]   SCORE SEQUENCES IN ORIENTED GRAPHS [J].
Pirzada, S. ;
Naikoo, T. A. ;
Shah, N. A. .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2007, 23 (1-2) :257-268