Cation pumping against a concentration gradient in conical nanopores characterized by load capacitors

被引:7
作者
Cervera, Javier [1 ]
Ramirez, Patricio [2 ]
Nasir, Saima [3 ,4 ]
Ali, Mubarak [3 ,4 ]
Ensinger, Wolfgang [4 ]
Siwy, Zuzanna S. [5 ]
Mafe, Salvador [1 ]
机构
[1] Univ Valencia, Dept Fis Terra & Termodinam, E-46100 Burjassot, Spain
[2] Univ Politecn Valencia, Dept Fis Aplicada, E-46022 Valencia, Spain
[3] GSI Helmholtzzentrum Schwerionenforsch, Mat Res Dept, D-64291 Darmstadt, Germany
[4] Tech Univ Darmstadt, Dept Mat & Geosci, D-64287 Darmstadt, Germany
[5] Univ Calif Irvine, Dept Phys & Astron, Dept Chem, Dept Biomed Engn, Irvine, CA 92697 USA
关键词
Nanochannels; Transport against a concentration gradient; Ion current rectification; Nanofluidic devices; Nanoporous membranes; ION CURRENT RECTIFICATION; FREE-ENERGY; ASYMMETRIC NANOPORES; TRANSPORT; CHANNELS; TRANSDUCTION; VOLTAGE; MECHANISM; DIFFUSION;
D O I
10.1016/j.bioelechem.2023.108445
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We study the cation transport against an external concentration gradient (cation pumping) that occurs in conical nanopores when zero-average oscillatory and white noise potentials are externally applied. This pumping, based on the electrically asymmetric nanostructure, is characterized here by a load capacitor arrangement. In the case of white noise signals, the conical nanopore acts as an electrical valve that allows extraction of order from chaos. No molecular carriers, specific ion pumps, and competitive ion-binding phenomena are required. The nanopore conductance on/off states mimic those of the voltage-gated ion channels in the cell membrane. These channels allow modulating membrane potentials and ionic concentration gradients along oscillatory pulses in circadian rhythms and the cell cycle. We show that the combination of asymmetric nanostructures with load capacitors can be useful for the understanding of nanofluidic processes based on bioelectrochemical gradients.
引用
收藏
页数:7
相关论文
共 54 条
[1]   Fluctuation-Driven Transport in Biological Nanopores. A 3D Poisson-Nernst-Planck Study [J].
Aguilella-Arzo, Marcel ;
Queralt-Martin, Maria ;
Lopez, Maria-Lidon ;
Alcaraz, Antonio .
ENTROPY, 2017, 19 (03)
[2]   Track etching technique in membrane technology [J].
Apel, P .
RADIATION MEASUREMENTS, 2001, 34 (1-6) :559-566
[3]   Shedding light on the mechanism of asymmetric track etching: an interplay between latent track structure, etchant diffusion and osmotic flow [J].
Apel, Pavel Y. ;
Bashevoy, Valery V. ;
Blonskaya, Irina V. ;
Lizunov, Nikolay E. ;
Orelovitch, Oleg L. ;
Trautmann, Christina .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (36) :25421-25433
[4]   Stochastic Conformational Pumping: A Mechanism for Free-Energy Transduction by Molecules [J].
Astumian, R. Dean .
ANNUAL REVIEW OF BIOPHYSICS, VOL 40, 2011, 40 :289-313
[5]   CAN FREE-ENERGY BE TRANSDUCED FROM ELECTRIC NOISE [J].
ASTUMIAN, RD ;
CHOCK, PB ;
TSONG, TY ;
CHEN, YD ;
WESTERHOFF, HV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (02) :434-438
[6]   Nanofiltration performance of conical and hourglass nanopores [J].
Balannec, Beatrice ;
Ghoufi, Aziz ;
Szymczyk, Anthony .
JOURNAL OF MEMBRANE SCIENCE, 2018, 552 :336-340
[7]   Large osmotic energy harvesting from functionalized conical nanopore suitable for membrane applications [J].
Balme, Sebastien ;
Ma, Tianji ;
Balanzat, Emmanuel ;
Janot, Jean-Marc .
JOURNAL OF MEMBRANE SCIENCE, 2017, 544 :18-24
[8]   Bioelectric controls of cell proliferation Ion channels, membrane voltage and the cell cycle [J].
Blackiston, Douglas J. ;
McLaughlin, Kelly A. ;
Levin, Michael .
CELL CYCLE, 2009, 8 (21) :3527-3536
[9]   Concentration-Gradient-Dependent Ion Current Rectification in Charged Conical Nanopores [J].
Cao, Liuxuan ;
Guo, Wei ;
Wang, Yugang ;
Jiang, Lei .
LANGMUIR, 2012, 28 (04) :2194-2199
[10]   Bioelectricity of non-excitable cells and multicellular pattern memories: Biophysical modeling [J].
Cervera, Javier ;
Levin, Michael ;
Mafe, Salvador .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2023, 1004 :1-31