Medical hyperspectral image classification based weakly supervised single-image global learning network

被引:11
作者
Zhang, Chenglong [1 ]
Mou, Lichao [2 ]
Shan, Shihao [1 ]
Zhang, Hao [1 ]
Qi, Yafei [3 ]
Yu, Dexin [3 ]
Zhu, Xiao Xiang [2 ]
Sun, Nianzheng [3 ]
Zheng, Xiangrong [4 ]
Ma, Xiaopeng [1 ]
机构
[1] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Peoples R China
[2] Tech Univ Munich TUM, Chair Data Sci Earth Observat, D-80333 Munich, Germany
[3] Shandong Univ, Qilu Hosp, Jinan 250012, Peoples R China
[4] Shandong First Med Univ, Dept Neurosurg, Shandong Prov Hosp Affiliated, Jinan 250021, Peoples R China
关键词
Medical hyperspectral images; Classification; Global learning;
D O I
10.1016/j.engappai.2024.108042
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Medical hyperspectral imaging provides new possibilities for non -invasive detection and characterization of diseases, and the processing of images can be accelerated and rationalized by using deep learning technology to classify pixels as one tissue or another, or as lesion or healthy tissue. However, most current methods for intelligently identifying pixels are not robust to large variations in pixel intensity within an image, particularly local learning approaches that rely on pixel or patch input. In this paper, we propose a network being able to learn to classify all pixels on an image by training with only a small number of manually labeled pixels in the same image. The network contains a hard band attention module (HBAM) to eliminate noisy bands and a dual-kernel spatial-spectral fusion attention module (DK-SSFAM) which uses two convolution kernels to weight spatial and spectral features and integrates them accordingly. We demonstrate that our proposed weakly supervised single -image global learning (SiGL) network classifies pixels in hyperspectral images of human brain in vivo better than traditional deep learning methods, suggesting potential for the clinic.
引用
收藏
页数:10
相关论文
共 56 条
[1]   Hyperspectral imaging and quantitative analysis for prostate cancer detection [J].
Akbari, Hamed ;
Halig, Luma V. ;
Schuster, David M. ;
Osunkoya, Adeboye ;
Master, Viraj ;
Nieh, Peter T. ;
Chen, Georgia Z. ;
Fei, Baowei .
JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (07)
[2]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[3]   Classification of Hyperspectral Images With Regularized Linear Discriminant Analysis [J].
Bandos, Tatyana V. ;
Bruzzone, Lorenzo ;
Camps-Valls, Gustavo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (03) :862-873
[4]   Composite kernels for hyperspectral image classification [J].
Camps-Valls, G ;
Gomez-Chova, L ;
Muñoz-Marí, J ;
Vila-Francés, J ;
Calpe-Maravilla, J .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (01) :93-97
[5]   Local sensitive discriminative broad learning system for hyperspectral image classification [J].
Cao, Heling ;
Song, Changlong ;
Chu, Yonghe ;
Zhao, Chenyang ;
Deng, Miaolei ;
Liu, Guangen .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
[6]   Hyperspectral Image Classification Using Dictionary-Based Sparse Representation [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10) :3973-3985
[7]   A review of hyperspectral imaging for nanoscale materials research [J].
Dong, Xingchen ;
Jakobi, Martin ;
Wang, Shengjia ;
Koehler, Michael H. ;
Zhang, Xiaoxing ;
Koch, Alexander W. .
APPLIED SPECTROSCOPY REVIEWS, 2019, 54 (04) :285-305
[8]   Spatio-spectral classification of hyperspectral images for brain cancer detection during surgical operations [J].
Fabelo, Himar ;
Ortega, Samuel ;
Ravi, Daniele ;
Kiran, B. Ravi ;
Sosa, Coralia ;
Bulters, Diederik ;
Callico, Gustavo M. ;
Bulstrode, Harry ;
Szolna, Adam ;
Pineiro, Juan F. ;
Kabwama, Silvester ;
Madronal, Daniel ;
Lazcano, Raquel ;
J-O'Shanahan, Aruma ;
Bisshopp, Sara ;
Hernandez, Maria ;
Baez, Abelardo ;
Yang, Guang-Zhong ;
Stanciulescu, Bogdan ;
Salvador, Ruben ;
Juarez, Eduardo ;
Sarmiento, Roberto .
PLOS ONE, 2018, 13 (03)
[9]   Swin transformer with multiscale 3D atrous convolution for hyperspectral image classification [J].
Farooque, Ghulam ;
Liu, Qichao ;
Sargano, Allah Bux ;
Xiao, Liang .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
[10]   Deep Retinal Image Segmentation: A FCN-Based Architecture with Short and Long Skip Connections for Retinal Image Segmentation [J].
Feng, Zhongwei ;
Yang, Jie ;
Yao, Lixiu ;
Qiao, Yu ;
Yu, Qi ;
Xu, Xun .
NEURAL INFORMATION PROCESSING (ICONIP 2017), PT IV, 2017, 10637 :713-722