Emerging applications of machine learning in genomic medicine and healthcare

被引:26
作者
Chafai, Narjice [1 ]
Bonizzi, Luigi [2 ]
Botti, Sara [3 ]
Badaoui, Bouabid [1 ,4 ]
机构
[1] Mohammed V Univ Rabat, Fac Sci, Dept Biol, Lab Biodivers Ecol & Genome, Rabat, Morocco
[2] Univ Milan, Dept Biomed Surg & Dent Sci, Milan, Italy
[3] PTP Sci Pk, Via Einstein Loc Cascina Codazza, Lodi, Italy
[4] Mohammed VI Polytech Univ UM6P, African Sustainable Agr Res Inst ASARI, Laayoune, Morocco
关键词
Genomic medicine; clinical medicine; artificial intelligence; machine learning; deep learning; COMPUTER-AIDED DIAGNOSIS; ARTIFICIAL-INTELLIGENCE; FEATURE-SELECTION; BIG DATA; PERSONALIZED MEDICINE; CLINICAL-APPLICATIONS; NONCODING VARIANTS; DRUG DISCOVERY; CANCER; PREDICTION;
D O I
10.1080/10408363.2023.2259466
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
The integration of artificial intelligence technologies has propelled the progress of clinical and genomic medicine in recent years. The significant increase in computing power has facilitated the ability of artificial intelligence models to analyze and extract features from extensive medical data and images, thereby contributing to the advancement of intelligent diagnostic tools. Artificial intelligence (AI) models have been utilized in the field of personalized medicine to integrate clinical data and genomic information of patients. This integration allows for the identification of customized treatment recommendations, ultimately leading to enhanced patient outcomes. Notwithstanding the notable advancements, the application of artificial intelligence (AI) in the field of medicine is impeded by various obstacles such as the limited availability of clinical and genomic data, the diversity of datasets, ethical implications, and the inconclusive interpretation of AI models' results. In this review, a comprehensive evaluation of multiple machine learning algorithms utilized in the fields of clinical and genomic medicine is conducted. Furthermore, we present an overview of the implementation of artificial intelligence (AI) in the fields of clinical medicine, drug discovery, and genomic medicine. Finally, a number of constraints pertaining to the implementation of artificial intelligence within the healthcare industry are examined.
引用
收藏
页码:140 / 163
页数:24
相关论文
共 165 条
[1]   Artificial Intelligence in the Fight Against COVID-19: Scoping Review [J].
Abd-Alrazaq, Alaa ;
Alajlani, Mohannad ;
Alhuwail, Dari ;
Schneider, Jens ;
Al-Kuwari, Saif ;
Shah, Zubair ;
Hamdi, Mounir ;
Househ, Mowafa .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2020, 22 (12)
[2]   Genomic prediction of celiac disease targeting HLA-positive individuals [J].
Abraham, Gad ;
Rohmer, Alexia ;
Tye-Din, Jason A. ;
Inouye, Michael .
GENOME MEDICINE, 2015, 7
[3]   SparSNP: Fast and memory-efficient analysis of all SNPs for phenotype prediction [J].
Abraham, Gad ;
Kowalczyk, Adam ;
Zobel, Justin ;
Inouye, Michael .
BMC BIOINFORMATICS, 2012, 13
[4]   SpliceAI-visual: a free online tool to improve SpliceAI splicing variant interpretation [J].
Agathe, Jean-Madeleine de Sainte ;
Filser, Mathilde ;
Isidor, Bertrand ;
Besnard, Thomas ;
Gueguen, Paul ;
Perrin, Aurelien ;
Van Goethem, Charles ;
Verebi, Camille ;
Masingue, Marion ;
Rendu, John ;
Cossee, Mireille ;
Bergougnoux, Anne ;
Frobert, Laurent ;
Buratti, Julien ;
Lejeune, Elodie ;
Le Guern, Eric ;
Pasquier, Florence ;
Clot, Fabienne ;
Kalatzis, Vasiliki ;
Roux, Anne-Francoise ;
Cogne, Benjamin ;
Baux, David .
HUMAN GENOMICS, 2023, 17 (01)
[5]   Bayesian Unsupervised Learning with Multiple Data Types [J].
Agius, Phaedra ;
Ying, Yiming ;
Campbell, Colin .
STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2009, 8 (01)
[6]   A deep learning approach to automate refinement of somatic variant calling from cancer sequencing data [J].
Ainscough, Benjamin J. ;
Barnell, Erica K. ;
Ronning, Peter ;
Campbell, Katie M. ;
Wagner, Alex H. ;
Fehniger, Todd A. ;
Dunn, Gavin P. ;
Uppaluri, Ravindra ;
Govindan, Ramaswamy ;
Rohan, Thomas E. ;
Griffith, Malachi ;
Mardis, Elaine R. ;
Swamidass, S. Joshua ;
Griffith, Obi L. .
NATURE GENETICS, 2018, 50 (12) :1735-+
[7]   Suite of decision tree-based classification algorithms on cancer gene expression data [J].
Al Snousy, Mohmad Badr ;
El-Deeb, Hesham Mohamed ;
Badran, Khaled ;
Al Khlil, Ibrahim Ali .
EGYPTIAN INFORMATICS JOURNAL, 2011, 12 (02) :73-82
[8]   Hyperparameter Optimization: Comparing Genetic Algorithm against Grid Search and Bayesian Optimization [J].
Alibrahim, Hussain ;
Ludwig, Simone A. .
2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, :1551-1559
[9]   From big data analysis to personalized medicine for all: challenges and opportunities [J].
Alyass, Akram ;
Turcotte, Michelle ;
Meyre, David .
BMC MEDICAL GENOMICS, 2015, 8
[10]   Ensemble Feature Learning of Genomic Data Using Support Vector Machine [J].
Anaissi, Ali ;
Goyal, Madhu ;
Catchpoole, Daniel R. ;
Braytee, Ali ;
Kennedy, Paul J. .
PLOS ONE, 2016, 11 (06)