Improving the Device Performance of CZTSSe Thin-Film Solar Cells via Indium Doping

被引:6
作者
Korade, Sumit D. [1 ,2 ,3 ,4 ]
Gour, Kuldeep Singh [5 ]
Karade, Vijay C. [6 ]
Jang, Jun Sung [2 ,3 ]
Rehan, Muhammad [7 ]
Patil, Satyajeet S. [1 ]
Bhat, Tejasvinee S. [8 ]
Patil, Akhilesh P. [8 ]
Yun, Jae Ho [6 ]
Park, Jongsung [9 ]
Kim, Jin Hyeok [2 ,3 ]
Patil, Pramod S. [1 ]
机构
[1] Shivaji Univ, Dept Phys, Thin Film Mat Lab, Kolhapur 416004, Maharashtra, India
[2] Chonnam Natl Univ, Optoelect Convergence Res Ctr, Gwangju 61186, South Korea
[3] Chonnam Natl Univ, Dept Mat Sci & Engn, Gwangju 61186, South Korea
[4] Kisan Veer Mahavidyalaya, Dept Phys, Wai 412803, Maharashtra, India
[5] CSIR, Natl Met Lab NML, Adv Mat & Proc Div, Funct Mat Grp, Jamshedpur 831007, Jharkhand, India
[6] Korea Inst Energy Technol KENTECH, Dept Energy Engn, Naju 58217, South Korea
[7] Korea Inst Energy Res KIER, Photovolta Res Dept, Daejeon 305343, South Korea
[8] Shivaji Univ, Sch Nanosci & Biotechnol, Kolhapur 416004, Maharashtra, India
[9] Gyeongsang Natl Univ, Dept Energy Engn, Jinju 52849, Gyeongnam, South Korea
基金
新加坡国家研究基金会;
关键词
CZTSSe; thinfilms; indium; doping; efficiency; solar cells; CU2ZNSNS4; DEFECTS; HETEROJUNCTION; LAYER;
D O I
10.1021/acsami.3c13813
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Cation incorporation emerges as a promising approach for improving the performance of the kesterite Cu2ZnSn(S,Se)(4) (CZTSSe) device. Herein, we report indium (In) doping using the chemical bath deposition (CBD) technique to enhance the optoelectronic properties of CZTSSe thin-film solar cells (TFSCs). To incorporate a small amount of the In element into the CZTSSe absorber thin films, an ultrathin (<10 nm) layer of In2S3 is deposited on soft-annealed precursor (Zn-Sn-Cu) thin films prior to the sulfo-selenization process. The successful doping of In improved crystal growth and promoted the formation of larger grains. Furthermore, the CZTSSe TFSCs fabricated with In doping exhibited improved device performance. In particular, the In-CZTSSe-2-based device showed an improved power conversion efficiency (PCE) of 9.53%, open-circuit voltage (V-oc) of 486 mV, and fill factor (FF) of 61% compared to the undoped device. Moreover, the small amount of In incorporated into the CZTSSe absorber demonstrated reduced nonradiative recombination, improved carrier separation, and enhanced carrier transport properties. This study suggests a simple and effective way to incorporate In to achieve high efficiency and low V-oc loss.
引用
收藏
页码:57183 / 57191
页数:9
相关论文
共 58 条
[1]   High efficiency low temperature grown Cu(In,Ga)Se2 thin film solar cells on flexible substrates using NaF precursor layers [J].
Caballero, Raquel ;
Kaufmann, Christian A. ;
Eisenbarth, Tobias ;
Unold, Thomas ;
Klenk, Reiner ;
Schock, Hans-Werner .
PROGRESS IN PHOTOVOLTAICS, 2011, 19 (05) :547-551
[2]   Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers [J].
Chen, Shiyou ;
Walsh, Aron ;
Gong, Xin-Gao ;
Wei, Su-Huai .
ADVANCED MATERIALS, 2013, 25 (11) :1522-1539
[3]   Heterojunction reconstruction via In doping towards high-efficiency CZTSSe solar cells [J].
Cui, Changcheng ;
Fu, Junjie ;
Kou, Dongxing ;
Li, Yimeng ;
Wei, Hao ;
Wu, Zucheng ;
Zhou, Wenhui ;
Zhou, Zhengji ;
Yuan, Shengjie ;
Qi, Yafang ;
Pang, Shuping ;
Shao, Zhipeng ;
Wu, Sixin ;
Cui, Guanglei .
CHEMICAL ENGINEERING JOURNAL, 2023, 476
[4]   Cd-Free Cu2ZnSnS4 solar cell with an efficiency greater than 10% enabled by Al2O3 passivation layers [J].
Cui, Xin ;
Sun, Kaiwen ;
Huang, Jialiang ;
Yun, Jae S. ;
Lee, Chang-Yeh ;
Yan, Chang ;
Sun, Heng ;
Zhang, Yuanfang ;
Xue, Chaowei ;
Eder, Katja ;
Yang, Limei ;
Cairney, Julie M. ;
Seidel, Jan ;
Ekins-Daukes, N. J. ;
Green, Martin ;
Hoex, Bram ;
Hao, Xiaojing .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (09) :2751-2764
[5]   Suppressing interface recombination in CZTSSe solar cells by simple selenization with synchronous interface gradient doping [J].
Cui, Xin-Pan ;
Ma, Qiong ;
Zhou, Wen-Hui ;
Kou, Dong-Xing ;
Zhou, Zheng-Ji ;
Meng, Yue-Na ;
Qi, Ya-Fang ;
Yuan, Sheng-Jie ;
Han, Li-Tao ;
Wu, Si-Xin .
NANOSCALE, 2022, 15 (01) :185-194
[6]   Adjusting the SnZn defects in Cu2ZnSn(S,Se)4 absorber layer via Ge4+ implanting for efficient kesterite solar cells [J].
Deng, Yueqing ;
Zhou, Zhengji ;
Zhang, Xin ;
Cao, Lei ;
Zhou, Wenhui ;
Kou, Dongxing ;
Qi, Yafang ;
Yuan, Shengjie ;
Zheng, Zhi ;
Wu, Sixin .
JOURNAL OF ENERGY CHEMISTRY, 2021, 61 :1-7
[7]   Impact of various dopant elements on the properties of kesterite compounds for solar cell applications: a status review [J].
Dhawale, Dattatray S. ;
Ali, Adnan ;
Lokhande, Abhishek C. .
SUSTAINABLE ENERGY & FUELS, 2019, 3 (06) :1365-1383
[8]   A Facile Process for Partial Ag Substitution in Kesterite Cu2ZnSn(S,Se)4 Solar Cells Enabling a Device Efficiency of over 12% [J].
Gang, Myeng Gil ;
Karade, Vijay C. ;
Suryawanshi, Mahesh P. ;
Yoo, Hyesun ;
He, Mingrui ;
Hao, Xiaojing ;
Lee, In Jae ;
Lee, Byeong Hoon ;
Shin, Seung Wook ;
Kim, Jin Hyeok .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (03) :3959-3968
[9]   Band Tail Engineering in Kesterite Cu2ZnSn(S,Se)4 Thin-Film Solar Cells with 11.8% Efficiency [J].
Gang, Myeng Gil ;
Shin, Seung Wook ;
Suryawanshi, Mahesh P. ;
Ghorpade, Uma, V ;
Song, Zhaoning ;
Jang, Jun Sung ;
Yun, Jae Ho ;
Cheong, Hyeonsik ;
Yan, Yanfa ;
Kim, Jin Hyeok .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (16) :4555-4561
[10]   How small amounts of Ge modify the formation pathways and crystallization of kesterites [J].
Giraldo, S. ;
Saucedo, E. ;
Neuschitzer, M. ;
Oliva, F. ;
Placidi, M. ;
Alcobe, X. ;
Izquierdo-Roca, V. ;
Kim, S. ;
Tampo, H. ;
Shibata, H. ;
Perez-Rodriguez, A. ;
Pistor, P. .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (03) :582-593