Accelerating the Reaction Kinetics of CO2 Reduction to Multi-Carbon Products by Synergistic Effect between Cation and Aprotic Solvent on Copper Electrodes

被引:16
|
作者
Bai, Xiaowan [1 ]
Chen, Chaojie [1 ]
Zhao, Xunhua [2 ]
Zhang, Yehui [2 ]
Zheng, Yao [1 ]
Jiao, Yan [1 ]
机构
[1] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia
[2] Southeast Univ, Sch Phys, Key Lab Quantum Mat & Devices, Minist Educ, Nanjing 211189, Peoples R China
基金
澳大利亚研究理事会;
关键词
CO2; Reduction; Cations; Electrocatalysis; Operando Modelling; Water Microstructure; OXYGEN REDUCTION; CU2O NANOCUBES; CARBON-DIOXIDE; MECHANISM; DYNAMICS; COVERAGE; CATALYST;
D O I
10.1002/anie.202317512
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Improving the selectivity of electrochemical CO2 reduction to multi-carbon products (C2+) is an important and highly challenging topic. In this work, we propose and validate an effective strategy to improve C2+ selectivity on Cu electrodes, by introducing a synergistic effect between cation (Na+) and aprotic solvent (DMSO) to the electrolyte. Based on constant potential ab initio molecular dynamics simulations, we first revealed that Na+ facilitates C-C coupling while inhibits CH3OH/CH4 products via reducing the water network connectivity near the electrode. Furthermore, the water network connectivity was further decreased by introducing an aprotic solvent DMSO, leading to suppression of both C-1 production and hydrogen evolution reaction with minimal effect on *OCCO* hydrogenation. The synergistic effect enhancing C-2 selectivity was also experimentally verified through electrochemical measurements. The results showed that the Faradaic efficiency of C-2 increases from 9.3 % to 57 % at 50 mA/cm(2) under a mixed electrolyte of NaHCO3 and DMSO compared to a pure NaHCO3, which can significantly enhance the selectivity of the C-2 product. Therefore, our discovery provides an effective electrolyte-based strategy for tuning CO2RR selectivity through modulating the microenvironment at the electrode-electrolyte interface.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Solvent Effect on Electrochemical CO2 Reduction Reaction on Nanostructured Copper Electrodes
    Deacon-Price, Connor
    da Silva, Alisson H. M.
    Santana, Caïssia S.
    Koper, Marc T. M.
    Garcia, Amanda C.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (29): : 14518 - 14527
  • [2] Progress of photocatalytic CO2 reduction toward multi-carbon products
    Fang, Jiaojiao
    Zhu, Chengyang
    Hu, Huiling
    Li, Jiaqi
    Li, Licheng
    Zhu, Haiyan
    Mao, Junjie
    SCIENCE CHINA-CHEMISTRY, 2024, 67 (12) : 3994 - 4013
  • [3] Accelerating electrochemical CO2 reduction to multi-carbon products via asymmetric intermediate binding at confined nanointerfaces
    Zhang, Jin
    Guo, Chenxi
    Fang, Susu
    Zhao, Xiaotong
    Li, Le
    Jiang, Haoyang
    Liu, Zhaoyang
    Fan, Ziqi
    Xu, Weigao
    Xiao, Jianping
    Zhong, Miao
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [4] Accelerating electrochemical CO2 reduction to multi-carbon products via asymmetric intermediate binding at confined nanointerfaces
    Jin Zhang
    Chenxi Guo
    Susu Fang
    Xiaotong Zhao
    Le Li
    Haoyang Jiang
    Zhaoyang Liu
    Ziqi Fan
    Weigao Xu
    Jianping Xiao
    Miao Zhong
    Nature Communications, 14
  • [5] Oxide-Derived Copper Nanowire Bundles for Efficient CO2 Reduction to Multi-Carbon Products
    Xu, Dong
    Wu, Minfang
    Huang, Yan
    Gu, Yongzheng
    Wang, Guiwen
    Yang, Long
    Liu, Yongping
    Gao, Tengfei
    Li, Shoujie
    Wei, Wei
    Chen, Wei
    Dong, Xiao
    CATALYSTS, 2023, 13 (09)
  • [6] High carbon utilization in CO2 reduction to multi-carbon products in acidic media
    Xie, Yi
    Ou, Pengfei
    Wang, Xue
    Xu, Zhanyou
    Li, Yuguang C.
    Wang, Ziyun
    Huang, Jianan Erick
    Wicks, Joshua
    McCallum, Christopher
    Wang, Ning
    Wang, Yuhang
    Chen, Tianxiang
    Lo, Benedict T. W.
    Sinton, David
    Yu, Jimmy C.
    Wang, Ying
    Sargent, Edward H.
    NATURE CATALYSIS, 2022, 5 (06) : 564 - 570
  • [7] High carbon utilization in CO2 reduction to multi-carbon products in acidic media
    Yi Xie
    Pengfei Ou
    Xue Wang
    Zhanyou Xu
    Yuguang C. Li
    Ziyun Wang
    Jianan Erick Huang
    Joshua Wicks
    Christopher McCallum
    Ning Wang
    Yuhang Wang
    Tianxiang Chen
    Benedict T. W. Lo
    David Sinton
    Jimmy C. Yu
    Ying Wang
    Edward H. Sargent
    Nature Catalysis, 2022, 5 : 564 - 570
  • [8] Proton sponge promotion of electrochemical CO2 reduction to multi-carbon products
    Fan, Lei
    Liu, Chun-Yen
    Zhu, Peng
    Xia, Chuan
    Zhang, Xiao
    Wu, Zhen-Yu
    Lu, Yingying
    Senftle, Thomas P.
    Wang, Haotian
    JOULE, 2022, 6 (01) : 205 - 220
  • [9] Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts
    Woldu, Abebe Reda
    Huang, Zanling
    Zhao, Pengxiang
    Hu, Liangsheng
    Astruc, Didier
    COORDINATION CHEMISTRY REVIEWS, 2022, 454
  • [10] Engineering tandem catalysts and reactors for promoting electrocatalytic CO2 reduction reaction toward multi-carbon products
    Zhu, Shaojun
    Lu, Tianrui
    Lv, Jing-Jing
    Li, Jun
    Wang, Jichang
    Wang, Xin
    Jin, Huile
    Wang, Zheng-Jun
    Wang, Shun
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2024, 39