Impact of Channel Aging on Reconfigurable Intelligent Surface Aided Massive MIMO Systems With Statistical CSI

被引:29
作者
Papazafeiropoulos, Anastasios [1 ,2 ]
Krikidis, Ioannis [3 ]
Kourtessis, Pandelis [1 ]
机构
[1] Univ Hertfordshire, Commun & Intelligent Syst Res Grp, Hatfield AL10 9AB, England
[2] Univ Luxembourg, SnT, L-4365 Esch Sur Alzette, Luxembourg
[3] Univ Cyprus, IRIDA Res Ctr Commun Technol, Dept Elect & Comp Engn, CY-1678 Nicosia, Cyprus
基金
欧洲研究理事会;
关键词
Channel estimation; Aging; Downlink; Rayleigh channels; Precoding; Training; Optimization; Achievable spectral efficiency; beyond 5G networks; channel aging; channel estimation; reconfigurable intelligent surface (RIS); REFLECTING SURFACE; NETWORKS; PROBABILITY; PERFORMANCE; ENERGY;
D O I
10.1109/TVT.2022.3203796
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The incorporation of reconfigurable intelligent surface (RIS) into massive multiple-input-multiple-output (mMIMO) systems can unleash the potential of next-generation networks by improving the performance of user equipments (UEs) in service dead zones. However, their requirement for accurate channel state information (CSI) is critical, and especially, applications with UE mobility that induce channel aging make challenging the achievement of adequate quality of service. Hence, in this work, we investigate the impact of channel aging on the performance of RIS-assisted mMIMO systems under both spatial correlation and imperfect CSI conditions. Specifically, by accounting for channel aging during both uplink training and downlink data transmission phases, we first perform minimum mean square error (MMSE) channel estimation to obtain the UE effective channels with low overhead similar to conventional systems without RIS. Next, we derive the downlink achievable sum spectral efficiency (SE) with regularized zero-forcing (RZF) precoding in closed-form being dependent only on large-scale statistics by using the deterministic equivalent (DE) analysis. Subsequently, we present the attractive optimization of the achievable sum SE with respect to the phase shifts and the total transmit power that can be performed every several coherence intervals due to the slow variation of the large-scale statistics. Numerical results validate the analytical expressions and demonstrate the performance while allowing the extraction of insightful design conclusions for common scenarios including UE mobility. In particular, channel aging degrades the performance but its impact can be controlled by choosing appropriately the frame duration or by increasing the number of RIS elements.
引用
收藏
页码:689 / 703
页数:15
相关论文
共 46 条
[1]   Intelligent Reflecting Surface: Practical Phase Shift Model and Beamforming Optimization [J].
Abeywickrama, Samith ;
Zhang, Rui ;
Wu, Qingqing ;
Yuen, Chau .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (09) :5849-5863
[2]  
[Anonymous], 2010, TR, V36, P814
[3]  
[Anonymous], 2012, MATRIX COOKBOOK
[4]  
Bai Z, 2010, SPRINGER SER STAT, P1, DOI 10.1007/978-1-4419-0661-8
[5]   Wireless Communications Through Reconfigurable Intelligent Surfaces [J].
Basar, Ertugrul ;
Di Renzo, Marco ;
De Rosny, Julien ;
Debbah, Merouane ;
Alouini, Mohamed-Slim ;
Zhang, Rui .
IEEE ACCESS, 2019, 7 :116753-116773
[6]   Massive MIMO with Non-Ideal Arbitrary Arrays: Hardware Scaling Laws and Circuit-Aware Design [J].
Bjoernson, Emil ;
Matthaiou, Michail ;
Debbah, Merouane .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2015, 14 (08) :4353-4368
[7]   Rayleigh Fading Modeling and Channel Hardening for Reconfigurable Intelligent Surfaces [J].
Bjornson, Emil ;
Sanguinetti, Luca .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (04) :830-834
[8]   Intelligent Reflecting Surface Versus Decode-and-Forward: How Large Surfaces are Needed to Beat Relaying? [J].
Bjornson, Emil ;
Ozdogan, Ozgecan ;
Larsson, Erik G. .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (02) :244-248
[9]   Massive MIMO networks: Spectral, energy, and hardware efficiency [J].
Björnson E. ;
Hoydis J. ;
Sanguinetti L. .
Foundations and Trends in Signal Processing, 2017, 11 (3-4) :154-655
[10]   Five Disruptive Technology Directions for 5G [J].
Boccardi, Federico ;
Heath, Robert W., Jr. ;
Lozano, Angel ;
Marzetta, Thomas L. ;
Popovski, Petar .
IEEE COMMUNICATIONS MAGAZINE, 2014, 52 (02) :74-80