Infinitely Many Solutions for a Nonlinear Elliptic PDE with Multiple Hardy-Sobolev Critical Exponents

被引:2
作者
Bouabid, Khalid [1 ]
Echarghaoui, Rachid [1 ]
机构
[1] Ibn Tofail Univ, Fac Sci, Dept Math, BP 133, Kenitra, Morocco
关键词
Laplacien; Critical Sobolev-Hardy exponent; Critical Sobolev exponent; Infinitely many solutions; Pohozaev identity; EQUATION;
D O I
10.1007/s12591-023-00629-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by an approximating argument, we obtain two disjoint and infinite sets of solutions for the following elliptic equation with multiple Hardy-Sobolev critical exponents {-Delta u = mu vertical bar u vertical bar(2*-2)u + Sigma(l)(i-1) vertical bar u vertical bar(2*(si)-2)u/vertical bar x vertical bar(si) + a(x)vertical bar u vertical bar(q-2)u in Omega, u=0 on partial derivative Omega, where omega is a smooth bounded domain in R-N with 0 is an element of partial derivative Omega and all the principle curvatures of partial derivative Omega; at 0 are negative, a is an element of C-1((Omega) over bar ,R*(+)), mu > 0, 0 < s(1) < s(2) < ... < s(l) < 2, 1 < q < 2 and N > 2q+1/q-1. By 2* :=2N/N-2 and 2*(s(i)) :=2(N-s(i))/N-2 we denote the critical Sobolev exponent and Hardy-Sobolev exponents, respectively
引用
收藏
页码:71 / 79
页数:9
相关论文
共 13 条
[1]   LUSTERNIK-SCHNIRELMAN THEORY AND NONLINEAR EIGENVALUE PROBLEMS [J].
AMANN, H .
MATHEMATISCHE ANNALEN, 1972, 199 (01) :55-&
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]   MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT OR WITH A NONSYMMETRIC TERM [J].
AZORERO, JG ;
ALONSO, IP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :877-895
[4]   ON AN ELLIPTIC EQUATION WITH CONCAVE AND CONVEX NONLINEARITIES [J].
BARTSCH, T ;
WILLEM, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (11) :3555-3561
[5]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[6]   Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth [J].
Cao, Daomin ;
Peng, Shuangjie ;
Yan, Shusen .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (06) :2861-2902
[7]   Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential [J].
Cao, Daomin ;
Yan, Shusen .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 38 (3-4) :471-501
[8]  
Devillanova G., 2002, Adv. Differ. Equ., V7, P1257
[9]   Infinitely many solutions for elliptic systems with critical exponents [J].
Liu, Zhaoxia ;
Han, Pigong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 353 (02) :544-552
[10]  
Rabinowitz P.H., 2009, EIGENVALUES NONLINEA, P139, DOI [10.1007/978-3-642-10940-9_4, DOI 10.1007/978-3-642-10940-9_4]