Detection of ASD Children through Deep-Learning Application of fMRI

被引:16
作者
Feng, Min [1 ,2 ]
Xu, Juncai [3 ]
机构
[1] Nanjing Med Univ, Affiliated Brain Hosp, Nanjing Rehabil Med Ctr, Nanjing 210029, Peoples R China
[2] Nanjing Normal Univ, Sch Chinese Language & Literature, Nanjing 210024, Peoples R China
[3] Case Western Reserve Univ, Sch Engn, Cleveland, OH 44106 USA
来源
CHILDREN-BASEL | 2023年 / 10卷 / 10期
关键词
autism spectrum disorder; ASD screening; convolutional neural networks; deep learning; fMRI; NEURAL-NETWORKS;
D O I
10.3390/children10101654
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
Autism spectrum disorder (ASD) necessitates prompt diagnostic scrutiny to enable immediate, targeted interventions. This study unveils an advanced convolutional-neural-network (CNN) algorithm that was meticulously engineered to examine resting-state functional magnetic resonance imaging (fMRI) for early ASD detection in pediatric cohorts. The CNN architecture amalgamates convolutional, pooling, batch-normalization, dropout, and fully connected layers, optimized for high-dimensional data interpretation. Rigorous preprocessing yielded 22,176 two-dimensional echo planar samples from 126 subjects (56 ASD, 70 controls) who were sourced from the Autism Brain Imaging Data Exchange (ABIDE I) repository. The model, trained on 17,740 samples across 50 epochs, demonstrated unparalleled diagnostic metrics-accuracy of 99.39%, recall of 98.80%, precision of 99.85%, and an F1 score of 99.32%-and thereby eclipsed extant computational methodologies. Feature map analyses substantiated the model's hierarchical feature extraction capabilities. This research elucidates a deep learning framework for computer-assisted ASD screening via fMRI, with transformative implications for early diagnosis and intervention.
引用
收藏
页数:17
相关论文
共 45 条
[1]   Motor Impairments Correlate with Social Deficits and Restricted Neuronal Loss in an Environmental Model of Autism [J].
Al Sagheer, Tareq ;
Haida, Obelia ;
Balbous, Anais ;
Francheteau, Maureen ;
Matas, Emmanuel ;
Fernagut, Pierre-Olivier ;
Jaber, Mohamed .
INTERNATIONAL JOURNAL OF NEUROPSYCHOPHARMACOLOGY, 2018, 21 (09) :871-882
[2]   Functional connectivity magnetic resonance imaging classification of autism [J].
Anderson, Jeffrey S. ;
Nielsen, Jared A. ;
Froehlich, Alyson L. ;
DuBray, Molly B. ;
Druzgal, T. Jason ;
Cariello, Annahir N. ;
Cooperrider, Jason R. ;
Zielinski, Brandon A. ;
Ravichandran, Caitlin ;
Fletcher, P. Thomas ;
Alexander, Andrew L. ;
Bigler, Erin D. ;
Lange, Nicholas ;
Lainhart, Janet E. .
BRAIN, 2011, 134 :3739-3751
[3]  
Anirudh R, 2019, INT CONF ACOUST SPEE, P3197, DOI [10.1109/ICASSP.2019.8683547, 10.1109/icassp.2019.8683547]
[4]   Neural mechanisms of cue-approach training [J].
Bakkour, Akram ;
Lewis-Peacock, Jarrod A. ;
Poldrack, Russell A. ;
Schonberg, Tom .
NEUROIMAGE, 2017, 151 :92-104
[5]   The Importance of Temporal Dynamics in the Transition From Suicidal Thought to Behavior [J].
Bryan, Craig J. ;
Rudd, M. David .
CLINICAL PSYCHOLOGY-SCIENCE AND PRACTICE, 2016, 23 (01) :21-25
[6]   Artificial neural network inspired by neuroimaging connectivity: application in autism spectrum disorder [J].
Byeon, Kyoungseob ;
Kwon, Junmo ;
Hong, Jisu ;
Park, Hyunjin .
2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, :575-578
[7]   Computer-aided diagnosis of autism spectrum disorder from EEG signals using deep learning with FAWT and multiscale permutation entropy features [J].
Chawla, Parikha ;
Rana, Shashi B. ;
Kaur, Hardeep ;
Singh, Kuldeep .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 2023, 237 (02) :282-294
[8]   Computer-Aided Screening of Autism Spectrum Disorder: Eye-Tracking Study Using Data Visualization and Deep Learning [J].
Cilia, Federica ;
Carette, Romuald ;
Elbattah, Mahmoud ;
Dequen, Gilles ;
Guerin, Jean-Luc ;
Bosche, Jerome ;
Vandromme, Luc ;
Le Driant, Barbara .
JMIR HUMAN FACTORS, 2021, 8 (04)
[9]   The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism [J].
Di Martino, A. ;
Yan, C-G ;
Li, Q. ;
Denio, E. ;
Castellanos, F. X. ;
Alaerts, K. ;
Anderson, J. S. ;
Assaf, M. ;
Bookheimer, S. Y. ;
Dapretto, M. ;
Deen, B. ;
Delmonte, S. ;
Dinstein, I. ;
Ertl-Wagner, B. ;
Fair, D. A. ;
Gallagher, L. ;
Kennedy, D. P. ;
Keown, C. L. ;
Keysers, C. ;
Lainhart, J. E. ;
Lord, C. ;
Luna, B. ;
Menon, V. ;
Minshew, N. J. ;
Monk, C. S. ;
Mueller, S. ;
Mueller, R. A. ;
Nebel, M. B. ;
Nigg, J. T. ;
O'Hearn, K. ;
Pelphrey, K. A. ;
Peltier, S. J. ;
Rudie, J. D. ;
Sunaert, S. ;
Thioux, M. ;
Tyszka, J. M. ;
Uddin, L. Q. ;
Verhoeven, J. S. ;
Wenderoth, N. ;
Wiggins, J. L. ;
Mostofsky, S. H. ;
Milham, M. P. .
MOLECULAR PSYCHIATRY, 2014, 19 (06) :659-667
[10]   Data Integration and Machine Learning: A Natural Synergy [J].
Dong, Xin Luna ;
Rekatsinas, Theodoros .
PROCEEDINGS OF THE VLDB ENDOWMENT, 2018, 11 (12) :2094-2097