Context-Guided Multi-view Stereo with Depth Back-Projection

被引:0
|
作者
Feng, Tianxing [1 ]
Zhang, Zhe [1 ]
Xiong, Kaiqiang [1 ]
Wang, Ronggang [1 ,2 ]
机构
[1] Peking Univ, Shenzhen Grad Sch, Shenzhen, Peoples R China
[2] Peng Cheng Lab, Shenzhen, Peoples R China
来源
MULTIMEDIA MODELING, MMM 2023, PT II | 2023年 / 13834卷
基金
中国国家自然科学基金;
关键词
Multi-view Stereo; Depth Estimation; 3D Reconstruction; SURFACE RECONSTRUCTION;
D O I
10.1007/978-3-031-27818-1_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Depth map based Multi-view stereo (MVS) is a task that focuses on taking images from multiple views of one same scene as input, estimating depth in each view, and generating 3D reconstructions of objects in the scene. Though most matching based MVS methods take features of the input images into account, few of them make the best of the underlying global information in images. They may suffer from difficult image regions, such as object boundaries, low-texture areas, and reflective surfaces. Human beings perceive these cases with the help of global awareness, that is to say, the context of the objects we observe. Similarly, we propose Context-guided Multi-view Stereo (ContextMVS), a coarse-to-fine pyramidal MVS network, which explicitly utilizes the context guidance in asymmetrical features to integrate global information into the 3D cost volume for feature matching. Also, with a low computational overhead, we adopt a depth back-projection refined up-sampling module to improve the non-parametric depth up-sampling between pyramid levels. Experimental results indicate that our method outperforms classical learning-based methods by a large margin on public benchmarks, DTU and Tanks and Temples, demonstrating the effectiveness of our method.
引用
收藏
页码:91 / 102
页数:12
相关论文
共 50 条
  • [1] Multi-View Guided Multi-View Stereo
    Poggi, Matteo
    Conti, Andrea
    Mattoccia, Stefano
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 8391 - 8398
  • [2] Multi-View Stereo and Depth Priors Guided NeRF for View Synthesis
    Deng, Wang
    Zhang, Xuetao
    Guo, Yu
    Lu, Zheng
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 3922 - 3928
  • [3] Uncertainty Guided Multi-View Stereo Network for Depth Estimation
    Su, Wanjuan
    Xu, Qingshan
    Tao, Wenbing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (11) : 7796 - 7808
  • [4] Continuous Depth Estimation for Multi-view Stereo
    Liu, Yebin
    Cao, Xun
    Dai, Qionghai
    Xu, Wenli
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 2121 - 2128
  • [5] MULTI-VIEW IMAGE FEATURE CORRELATION GUIDED COST AGGREGATION FOR MULTI-VIEW STEREO
    Lai, Yawen
    Qiu, Ke
    Wang, Ronggang
    2021 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2021,
  • [6] Depth-Guided Optimization of Neural Radiance Fields for Indoor Multi-View Stereo
    Wei, Yi
    Liu, Shaohui
    Zhou, Jie
    Lu, Jiwen
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (09) : 10835 - 10849
  • [7] Learning Depth for Multi-View Stereo with Adversarial Training
    Wang, Liang
    Fan, Deqiao
    Li, Jianshu
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1674 - 1679
  • [8] Adaptive depth estimation for pyramid multi-view stereo
    Liao, Jie
    Fu, Yanping
    Yan, Qingan
    Luo, Fei
    Xiao, Chunxia
    COMPUTERS & GRAPHICS-UK, 2021, 97 : 268 - 278
  • [9] MVSNet: Depth Inference for Unstructured Multi-view Stereo
    Yao, Yao
    Luo, Zixin
    Li, Shiwei
    Fang, Tian
    Quan, Long
    COMPUTER VISION - ECCV 2018, PT VIII, 2018, 11212 : 785 - 801
  • [10] REVISED DEPTH MAP ESTIMATION FOR MULTI-VIEW STEREO
    Yao, Yao
    Zhu, Hao
    Nie, Yongming
    Ji, Xiaoli
    Cao, Xun
    2014 INTERNATIONAL CONFERENCE ON 3D IMAGING (IC3D), 2014,