Automatic Spine Segmentation and Parameter Measurement for Radiological Analysis of Whole-Spine Lateral Radiographs Using Deep Learning and Computer Vision

被引:8
作者
Kim, Yong-Tae [1 ]
Jeong, Tae Seok [2 ]
Kim, Young Jae [1 ]
Kim, Woo Seok [3 ]
Kim, Kwang Gi [1 ]
Yee, Gi Taek [2 ]
机构
[1] Gachon Univ, Coll Med, Gil Med Ctr, Dept Biomed Engn, Incheon, South Korea
[2] Gachon Univ, Gil Med Ctr, Dept Neurosurg, Coll Med, Incheon, South Korea
[3] Gachon Univ, Coll Med, Gil Med Ctr, Dept Traumatol, Incheon, South Korea
关键词
Mask R-CNN; Spine; Computer vision; Computer-assisted diagnosis; SPINOPELVIC PARAMETERS; SAGITTAL BALANCE; DEFORMITY; INTRAOBSERVER; SCOLIOSIS; KEY; INTEROBSERVER; RELIABILITY; VALIDATION; ALIGNMENT;
D O I
10.1007/s10278-023-00830-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Radiographic examination is essential for diagnosing spinal disorders, and the measurement of spino-pelvic parameters provides important information for the diagnosis and treatment planning of spinal sagittal deformities. While manual measurement methods are the golden standard for measuring parameters, they can be time consuming, inefficient, and rater dependent. Previous studies that have used automatic measurement methods to alleviate the downsides of manual measurements showed low accuracy or could not be applied to general films. We propose a pipeline for automated measurement of spinal parameters by combining a Mask R-CNN model for spine segmentation with computer vision algorithms. This pipeline can be incorporated into clinical workflows to provide clinical utility in diagnosis and treatment planning. A total of 1807 lateral radiographs were used for the training (n = 1607) and validation (n = 200) of the spine segmentation model. An additional 200 radiographs, which were also used for validation, were examined by three surgeons to evaluate the performance of the pipeline. Parameters automatically measured by the algorithm in the test set were statistically compared to parameters measured manually by the three surgeons. The Mask R-CNN model achieved an average precision at 50% intersection over union (AP50) of 96.2% and a Dice score of 92.6% for the spine segmentation task in the test set. The mean absolute error values of the spino-pelvic parameters measurement results were within the range of 0.4 degrees (pelvic tilt) to 3.0 degrees (lumbar lordosis, pelvic incidence), and the standard error of estimate was within the range of 0.5 degrees (pelvic tilt) to 4.0 degrees (pelvic incidence). The intraclass correlation coefficient values ranged from 0.86 (sacral slope) to 0.99 (pelvic tilt, sagittal vertical axis).
引用
收藏
页码:1447 / 1459
页数:13
相关论文
共 36 条
  • [21] Validation of a new computer-assisted tool to measure spino-pelvic parameters
    Lafage, Renaud
    Ferrero, Emmanuelle
    Henry, Jensen K.
    Challier, Vincent
    Diebo, Bassel
    Liabaud, Barthelemy
    Lafage, Virginie
    Schwab, Frank
    [J]. SPINE JOURNAL, 2015, 15 (12) : 2493 - 2502
  • [22] Pelvic Tilt and Truncal Inclination Two Key Radiographic Parameters in the Setting of Adults With Spinal Deformity
    Lafage, Virginie
    Schwab, Frank
    Patel, Ashish
    Hawkinson, Nicola
    Farcy, Jean-Pierre
    [J]. SPINE, 2009, 34 (17) : E599 - E606
  • [23] Criteria to restore the sagittal balance in deformity and degenerative spondylolisthesis
    Lamartina, Claudio
    Berjano, Pedro
    Petruzzi, Mary
    Sinigaglia, Aldo
    Casero, Giovanni
    Cecchinato, Riccardo
    Damilano, Marco
    Bassani, Roberto
    [J]. EUROPEAN SPINE JOURNAL, 2012, 21 : S27 - S31
  • [24] Microsoft COCO: Common Objects in Context
    Lin, Tsung-Yi
    Maire, Michael
    Belongie, Serge
    Hays, James
    Perona, Pietro
    Ramanan, Deva
    Dollar, Piotr
    Zitnick, C. Lawrence
    [J]. COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 : 740 - 755
  • [25] Ramer U., 1972, Computer Graphics and Image Processing, V1, P244, DOI [10.1016/S0146-664X(72)80017-0, DOI 10.1016/S0146-664X(72)80017-0]
  • [26] Adult scoliosis: Prevalence, SF-36, and nutritional parameters in an elderly volunteer population
    Schwab, F
    Dubey, A
    Gamez, L
    El Fegoun, AB
    Hwang, K
    Pagala, M
    Farcy, JP
    [J]. SPINE, 2005, 30 (09) : 1082 - 1085
  • [27] Scoliosis Research Society-Schwab Adult Spinal Deformity Classification A Validation Study
    Schwab, Frank
    Ungar, Benjamin
    Blondel, Benjamin
    Buchowski, Jacob
    Coe, Jeffrey
    Deinlein, Donald
    DeWald, Christopher
    Mehdian, Hossein
    Shaffrey, Christopher
    Tribus, Clifford
    Lafage, Virginie
    [J]. SPINE, 2012, 37 (12) : 1077 - 1082
  • [28] Adult Spinal Deformity-Postoperative Standing Imbalance How Much Can You Tolerate? An Overview of Key Parameters in Assessing Alignment and Planning Corrective Surgery
    Schwab, Frank
    Patel, Ashish
    Ungar, Benjamin
    Farcy, Jean-Pierre
    Lafage, Virginie
    [J]. SPINE, 2010, 35 (25) : 2224 - 2231
  • [29] Radiographical Spinopelvic Parameters and Disability in the Setting of Adult Spinal Deformity A Prospective Multicenter Analysis
    Schwab, Frank J.
    Blondel, Benjamin
    Bess, Shay
    Hostin, Richard
    Shaffrey, Christopher I.
    Smith, Justin S.
    Boachie-Adjei, Oheneba
    Burton, Douglas C.
    Akbarnia, Behrooz A.
    Mundis, Gregory M.
    Ames, Christopher P.
    Kebaish, Khaled
    Hart, Robert A.
    Farcy, Jean-Pierre
    Lafage, Virginie
    [J]. SPINE, 2013, 38 (13) : E803 - E812
  • [30] Deep Learning Automates Measurement of Spinopelvic Parameters on Lateral Lumbar Radiographs
    Schwartz, John T.
    Cho, Brian H.
    Tang, Peter
    Schefflein, Javin
    Arvind, Varun
    Kim, Jun S.
    Doshi, Amish H.
    Cho, Samuel K.
    [J]. SPINE, 2021, 46 (12) : E671 - E678