Shock compression of porous copper containing helium: Molecular dynamics simulations and theoretical model

被引:4
作者
Wu, Bao [1 ]
Wang, Xinxin [1 ]
Sui, Haonan [1 ]
Bao, Qiang [1 ]
He, Anmin [1 ]
Sun, Haiquan [1 ]
Wu, Qiang [2 ]
Wang, Pei [1 ,3 ]
机构
[1] Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100094, Peoples R China
[2] China Acad Engn Phys, Natl Key Lab Shock Wave & Detonat Phys, Inst Fluid Phys, Mianyang 621900, Sichuan, Peoples R China
[3] Peking Univ, Ctr Appl Phys & Technol, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Porous metals; Gas-containing; Shock compression; Elastic-plastic shocks; Hugoniot; EQUATION-OF-STATE; COLLAPSE; DAMAGE;
D O I
10.1016/j.ijplas.2024.103899
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Shock compression of porous copper containing helium is studied via non-equilibrium molecular dynamic simulations. The results show that the shock propagation exhibits an elastic-plastic double-shockwave structure at low shock velocity. The shock Hugoniot elastic limit increases with higher gas concentration, and decreases with larger porosity, while almost independent of the shock velocity. The back-and-forth propagation of elastic shockwave between plastic shockwave and free surface leads to the occurrence of the special structure of "surface cap", which can protect the porous metal in the vicinity of the free surface from collapse. The plastic shock propagates faster with higher gas concentration and gradually catches up with the elastic shockwave as shock intensity increases. Compared with porous copper without gas, the presence of helium significantly inhibits the post-shock temperature rising and the shock melting behavior. A new theoretical model was proposed to quantify the shock Hugoniot of porous materials containing gas. The model's predictions align well with MD simulations across a wide pressure range up to 100 GPa with different gas concentrations and porosities.
引用
收藏
页数:20
相关论文
共 63 条
[1]   COMPRESSION OF POROUS COPPER BY SHOCK WAVES [J].
BOADE, RR .
JOURNAL OF APPLIED PHYSICS, 1968, 39 (12) :5693-&
[2]   Experimental characterization of quasi static and shock wave behavior of porous aluminum [J].
Bonnan, S ;
Hereil, PL ;
Collombet, F .
JOURNAL OF APPLIED PHYSICS, 1998, 83 (11) :5741-5749
[3]   X-ray microtomography analysis of dynamic damage in tantalum [J].
Bontaz-Carion, Joelle ;
Pellegrini, Yves-Patrick .
ADVANCED ENGINEERING MATERIALS, 2006, 8 (06) :480-486
[4]   Comparative study of analytical methods for Hugoniot curves of porous materials [J].
Boshoff-Mostert, L ;
Viljoen, HJ .
JOURNAL OF APPLIED PHYSICS, 1999, 86 (03) :1245-1254
[5]   Atomistic shock Hugoniot simulation of single-crystal copper [J].
Bringa, EM ;
Cazamias, JU ;
Erhart, P ;
Stölken, J ;
Tanushev, N ;
Wirth, BD ;
Rudd, RE ;
Caturla, MJ .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (07) :3793-3799
[6]   STATIC AND DYNAMIC PORE-COLLAPSE RELATIONS FOR DUCTILE POROUS MATERIALS [J].
CARROLL, MM ;
HOLT, AC .
JOURNAL OF APPLIED PHYSICS, 1972, 43 (04) :1626-&
[7]   Molecular dynamics study of shock-induced deformation phenomena and spallation failure in Ni-based single crystal superalloys [J].
Chen, Bin ;
Li, Yunli ;
Sopu, Daniel ;
Eckert, Juergen ;
Wu, Wenping .
INTERNATIONAL JOURNAL OF PLASTICITY, 2023, 162
[8]   Femtosecond quantification of void evolution during rapid material failure [J].
Coakley, James ;
Higginbotham, Andrew ;
McGonegle, David ;
Ilavsky, Jan ;
Swinburne, Thomas D. ;
Wark, Justin S. ;
Rahman, Khandaker M. ;
Vorontsov, Vassili A. ;
Dye, David ;
Lane, Thomas J. ;
Boutet, Sebastien ;
Koglin, Jason ;
Robinson, Joseph ;
Milathianaki, Despina .
SCIENCE ADVANCES, 2020, 6 (51)
[9]   Invariance of the Dissipative Action at Ultrahigh Strain Rates Above the Strong Shock Threshold [J].
Crowhurst, Jonathan C. ;
Armstrong, Michael R. ;
Knight, Kimberly B. ;
Zaug, Joseph M. ;
Behymer, Elaine M. .
PHYSICAL REVIEW LETTERS, 2011, 107 (14)
[10]   Steady shock waves in porous metals: Viscosity and micro-inertia effects [J].
Czarnota, Christophe ;
Molinari, Alain ;
Mercier, Sebastien .
INTERNATIONAL JOURNAL OF PLASTICITY, 2020, 135