Highly selective and low-overpotential electrocatalytic CO2 reduction to ethanol by Cu-single atoms decorated N-doped carbon dots

被引:16
|
作者
Purbia, Rahul [1 ]
Choi, Sung Yeol [1 ]
Woo, Chae Heon [1 ]
Jeon, Jiho [1 ]
Lim, Chulwan [2 ]
Lee, Dong Ki [2 ,5 ]
Choi, Jae Young [1 ,2 ,3 ]
Oh, Hyung-Suk [2 ,3 ]
Baik, Jeong Min [1 ,3 ,4 ]
机构
[1] Sungkyunkwan Univ SKKU, Sch Adv Mat Sci & Engn, Suwon 16419, South Korea
[2] Korea Inst Sci & Technol, Clean Energy Res Ctr, Hwarang Ro 14 Gil 5, Seoul 02792, South Korea
[3] Sungkyunkwan Univ SKKU, KIST SKKU Carbon Neutral Res Ctr, Suwon 16419, South Korea
[4] Sungkyunkwan Univ, SKKU Inst Energy Sci & Technol SIEST, Suwon 16419, South Korea
[5] Yonsei Univ, Yonsei KIST Convergence Res Inst, Dept Chem & Biomol Engn, Seoul 03722, South Korea
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2024年 / 345卷
基金
新加坡国家研究基金会;
关键词
Low-temperature; Single-atom catalyst; N-doped carbon dots; CO2; reduction; Ethanol; GENERAL TECHNOECONOMIC ANALYSIS; OXIDATION-STATE; COPPER(II) COMPLEXES; ELECTROREDUCTION; DOPAMINE; CATALYSTS; DIOXIDE; ETHYLENE; LIGANDS; ACETATE;
D O I
10.1016/j.apcatb.2024.123694
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Selective, low-overpotential and high Faradaic efficiency electroreduction of CO2 to ethanol is in prominent global demand and lies in structuring, loading, and modulating the coordination states of Cu single atom catalysts (SACs) with support matrix. Here, the low -temperature (160(degrees) C) synthesis of Cu-SACs-N-doped carbons dots (Cu-SACs-N-CQDs) is reported via Cu-dopamine complex process. The optimized Cu-SACs-N-CQDs electrocatalyst brings remarkably high Faraday efficiency (> 80%) and selectivity for ethanol with 50 h operation stability, which far exceeds previous results in terms of overpotential, stability, and Faraday efficiency. Surprisingly, the Faraday efficiency and selectivity of ethanol are highly sensitive to the coordination states of copper SACs with variation of Cu loadings. Operando X-ray absorption spectroscopy indicates in situ -generated neighboring metallic Cu-Cu atom coordination as real catalytic active sites from isolated single Cu atom during CO2 reduction, which favors the ethanol selectivity.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] FeNi alloys encapsulated with N-doped porous carbon nanotubes as highly efficient and durable CO2 reduction electrocatalyst
    Zhang, Li
    Geng, Bo
    Gao, Yang
    Kang, Hefei
    Wang, Pengfei
    Liu, Chunmei
    Xiao, He
    Zhao, Man
    Jia, Jianfeng
    Wu, Haishun
    CHEMICAL ENGINEERING JOURNAL, 2024, 481
  • [22] Mechanistic insight into the synergy between nickel single atoms and nanoparticles on N-doped carbon for electroreduction of CO2
    Sun, Mingdong
    Guan, Wenwen
    Chen, Cailing
    Wu, Chao
    Liu, Xiaoling
    Meng, Biao
    Chen, Tao
    Han, Yu
    Wang, Jun
    Xi, Shibo
    Zhou, Yu
    JOURNAL OF ENERGY CHEMISTRY, 2025, 100 : 327 - 336
  • [23] Synergistic effect of Cu and Fe small nanoparticles supported on porous N-doped graphitic framework for selective electrochemical CO2 reduction at low overpotential
    Du, Xiangze
    Peng, Lu
    Hu, Jiajun
    Peng, Yong
    Primo, Ana
    Li, Dan
    Albero, Josep
    Hu, Changwei
    Garcia, Hermenegildo
    NANOSCALE, 2022, 14 (32) : 11583 - 11589
  • [24] Atomic Ni Species Anchored N-Doped Carbon Hollow Spheres as Nanoreactors for Efficient Electrochemical CO2 Reduction
    Ma, Shuangshuang
    Su, Panpan
    Huang, Wenjuan
    Jiang, San Ping
    Bai, Shiyang
    Liu, Jian
    CHEMCATCHEM, 2019, 11 (24) : 6092 - 6098
  • [25] Cu atomic clusters on N-doped porous carbon with tunable oxidation state for the highly-selective electroreduction of CO2
    Gao, Jin
    Wang, Hui
    Feng, Kun
    Xiang, Chensheng
    Wang, Huibo
    Qi, Huihui
    Liu, Yang
    Tian, He
    Zhong, Jun
    Kang, Zhenhui
    MATERIALS ADVANCES, 2020, 1 (07): : 2286 - 2292
  • [26] N-doped Cu2O with the tunable Cu0 and Cu+ sites for selective CO2 electrochemical reduction to ethylene
    Shen, Yao
    Qian, Liuqing
    Xu, Qianqian
    Wang, Shilun
    Chen, Yong
    Lu, Hengxia
    Zhou, Yu
    Ye, Jiexu
    Zhao, Jingkai
    Gao, Xiang
    Zhang, Shihan
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2025, 150 : 246 - 253
  • [27] N-doped peanut-shaped carbon nanotubes for efficient CO2 electrocatalytic reduction
    Zhou, Wenyang
    Shen, Haoming
    Wang, Qian
    Onoe, Jun
    Kawazoe, Yoshiyuki
    Jena, Puru
    CARBON, 2019, 152 : 241 - 246
  • [28] Ionic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO2
    Sun, Mingdong
    Pan, Dongxin
    Ye, Tingting
    Gu, Jing
    Zhou, Yu
    Wang, Jun
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2023, 55 : 212 - 221
  • [29] Achieving Highly Efficient, Selective, and Stable CO2 Reduction on Nitrogen-Doped Carbon Nanotubes
    Wu, Jingjie
    Yadav, Ram Manohar
    Liu, Mingjie
    Sharma, Pranav P.
    Tiwary, Chandra Sekhar
    Ma, Lulu
    Zou, Xiaolong
    Zhou, Xiao-Dong
    Yakobson, Boris I.
    Lou, Jun
    Ajayan, Pulickel M.
    ACS NANO, 2015, 9 (05) : 5364 - 5371
  • [30] N-Doped Nanoporous Carbon from Biomass as a Highly Efficient Electrocatalyst for the CO2 Reduction Reaction
    Yao, Pengfei
    Qiu, Yanling
    Zhang, Taotao
    Su, Panpan
    Li, Xianfeng
    Zhang, Huamin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (05) : 5249 - 5255