An Improved Lightweight YOLOv5 for Remote Sensing Images

被引:2
|
作者
Hou, Shihao [1 ]
Fan, Linwei [1 ]
Zhang, Fan [1 ]
Liu, Bingchen [2 ]
机构
[1] Shandong Univ Finance & Econ, Sch Comp Sci & Technol, Jinan, Peoples R China
[2] Shandong Univ, Sch Software, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
Remote sensing images; Small object detection; YOLOv5; Normalized Wasserstein Distance; OBJECT DETECTION;
D O I
10.1007/978-3-031-44210-0_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Achieving real-time accurate detection in remote sensing images, which exhibit features such as high resolution, small targets, and complex backgrounds, remains challenging due to the substantial computational demands of existing object detection models. In this paper, we propose an improved remote sensing image small object detection method based on YOLOv5. In order to preserve high-resolution features, we remove the Focus module from the YOLOv5 network structure and introduce RepGhostNet as a feature extraction network to enhance both accuracy and speed. We adopt the BiFormer prediction head for more flexible computational allocation and content perception, and employ the Normalized Wasserstein Distance (NWD) metric to alleviate IoU's sensitivity to small objects. Experimental results show that our proposed method achieves mAP scores of 75.54% and 75.65% on the publicly available VEDAI and DIOR remote sensing image datasets, respectively, with significantly fewer parameters and FLOPs. Our approach effectively balances accuracy and speed compared to other models.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 50 条
  • [31] Light-YOLOv5: A Lightweight Algorithm for Improved YOLOv5 in Complex Fire Scenarios
    Xu, Hao
    Li, Bo
    Zhong, Fei
    APPLIED SCIENCES-BASEL, 2022, 12 (23):
  • [32] OAB-YOLOv5: One-Anchor-Based YOLOv5 for Rotated Object Detection in Remote Sensing Images
    Liu, Jie
    Qiao, Wensheng
    Xiong, Zhaolong
    JOURNAL OF SENSORS, 2022, 2022
  • [33] SEB-YOLO: An Improved YOLOv5 Model for Remote Sensing Small Target Detection
    Hui, Yan
    You, Shijie
    Hu, Xiuhua
    Yang, Panpan
    Zhao, Jing
    SENSORS, 2024, 24 (07)
  • [34] Ship Detection in Optical Sensing Images Based on Yolov5
    Chen, Yuwen
    Zhang, Chao
    Qiao, Tengfei
    Xiong, Jianlin
    Liu, Bin
    TWELFTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2020), 2021, 11720
  • [35] Lightweight network for insulator fault detection based on improved YOLOv5
    Weng, Dehua
    Zhu, Zhiliang
    Yan, Zhengbing
    Wu, Moran
    Jiang, Ziang
    Ye, Nan
    CONNECTION SCIENCE, 2024, 36 (01)
  • [36] A Lightweight Traffic Sign Recognition Model Based on Improved YOLOv5
    Yang, Jie
    Sun, Ting
    Zhu, Wenchao
    Li, Zonghao
    IEEE ACCESS, 2023, 11 : 115998 - 116010
  • [37] Lightweight safety helmet detection algorithm using improved YOLOv5
    Ren, Hongge
    Fan, Anni
    Zhao, Jian
    Song, Hairui
    Liang, Xiuman
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (04)
  • [38] Detection of Surface Defects in Lightweight Insulators Using Improved YOLOv5
    Guo Yu
    Ma Meiling
    Li Dalin
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (24)
  • [39] Lightweight Sea Cucumber Recognition Network Using Improved YOLOv5
    Xiao, Qian
    Li, Qian
    Zhao, Lide
    IEEE ACCESS, 2023, 11 : 44787 - 44797
  • [40] Lightweight Meter Pointer Recognition Method Based on Improved YOLOv5
    Zhang, Chi
    Wang, Kai
    Zhang, Jie
    Zhou, Fan
    Zou, Le
    SENSORS, 2024, 24 (05)