An Improved Lightweight YOLOv5 for Remote Sensing Images

被引:2
|
作者
Hou, Shihao [1 ]
Fan, Linwei [1 ]
Zhang, Fan [1 ]
Liu, Bingchen [2 ]
机构
[1] Shandong Univ Finance & Econ, Sch Comp Sci & Technol, Jinan, Peoples R China
[2] Shandong Univ, Sch Software, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
Remote sensing images; Small object detection; YOLOv5; Normalized Wasserstein Distance; OBJECT DETECTION;
D O I
10.1007/978-3-031-44210-0_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Achieving real-time accurate detection in remote sensing images, which exhibit features such as high resolution, small targets, and complex backgrounds, remains challenging due to the substantial computational demands of existing object detection models. In this paper, we propose an improved remote sensing image small object detection method based on YOLOv5. In order to preserve high-resolution features, we remove the Focus module from the YOLOv5 network structure and introduce RepGhostNet as a feature extraction network to enhance both accuracy and speed. We adopt the BiFormer prediction head for more flexible computational allocation and content perception, and employ the Normalized Wasserstein Distance (NWD) metric to alleviate IoU's sensitivity to small objects. Experimental results show that our proposed method achieves mAP scores of 75.54% and 75.65% on the publicly available VEDAI and DIOR remote sensing image datasets, respectively, with significantly fewer parameters and FLOPs. Our approach effectively balances accuracy and speed compared to other models.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 50 条
  • [21] Small target detection with remote sensing images based on an improved YOLOv5 algorithm (vol 16, 1074862, 2023)
    Pei, Wenjing
    Shi, Zhanhao
    Gong, Kai
    FRONTIERS IN NEUROROBOTICS, 2023, 17
  • [22] Lightweight highland barley detection based on improved YOLOv5
    Cai, Minghui
    Deng, Hui
    Cai, Jianwei
    Guo, Weipeng
    Hu, Zhipeng
    Yu, Dongzheng
    Zhang, Houxi
    PLANT METHODS, 2025, 21 (01)
  • [23] Lightweight improved YOLOv5 algorithm for PCB defect detection
    Xie, Yinggang
    Zhao, Yanwei
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [24] Improved lightweight road damage detection based on YOLOv5
    Liu, Chang
    Sun, Yu
    Chen, Jin
    Yang, Jing
    Wang, Fengchao
    OPTOELECTRONICS LETTERS, 2025, 21 (05) : 314 - 320
  • [25] Lightweight object detection algorithm for robots with improved YOLOv5
    Liu, Gang
    Hu, Yanxin
    Chen, Zhiyu
    Guo, Jianwei
    Ni, Peng
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [26] Lightweight Tunnel Obstacle Detection Based on Improved YOLOv5
    Li, Yingjie
    Ma, Chuanyi
    Li, Liping
    Wang, Rui
    Liu, Zhihui
    Sun, Zizheng
    SENSORS, 2024, 24 (02)
  • [27] An Improved Lightweight YOLOv5 Algorithm for Detecting Strawberry Diseases
    Chen, Shunlong
    Liao, Yinghua
    Lin, Feng
    Huang, Bo
    IEEE ACCESS, 2023, 11 : 54080 - 54092
  • [28] Lightweight Fire Detection Algorithm Based on Improved YOLOv5
    Zhang, Dawei
    Chen, Yutang
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (06) : 809 - 816
  • [29] Lightweight UAV Detection Algorithm Based on Improved YOLOv5
    Peng Y.
    Tu X.
    Yang Q.
    Li R.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2023, 50 (12): : 28 - 38
  • [30] Improved lightweight road damage detection based on YOLOv5
    LIU Chang
    SUN Yu
    CHEN Jin
    YANG Jing
    WANG Fengchao
    Optoelectronics Letters, 2025, 21 (05) : 314 - 320