Double-level View-correlation Multi-view Subspace Clustering

被引:4
作者
Lan, Shoujie [1 ]
Zheng, Qinghai [1 ]
Yu, Yuanlong [1 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view clustering; Subspace clustering; View-correlation; REPRESENTATION; MATRIX;
D O I
10.1016/j.knosys.2023.111271
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, significant progress has been made in Multi-view Subspace Clustering (MSC). Most existing MSC methods attempt to explore and exploit the view correlations of multi-view data to boost the clustering performance. They achieve the subspace matrices of different views from the original feature space directly. However, the diversity view-correlation and consistency-view correlation of multi-view data are two antago-nistic properties, which are improper and challenging to be captured in such a straightforward process. To simultaneously and properly investigate the two antagonistic properties of multi-view data, a novel Double -level View-correlation Multi-view Subspace Clustering method, named DV-MSC, is introduced in this paper. To be specific, DV-MSC adopts a strategy that deals with the diversity view-correlation and consistency view -correlation in different levels: (1) low-level, which excavates the diversity view-correlation in the feature space, and (2) high-level, which explores the consistency view-correlation in subspace representations. The underlying assumption is that different views should be diverse in the feature space while having the same clustering results, in other words, the proposed method explores the Diversity in Low-level Feature Content (DLFC) and the Consistency in High-level Clustering Structure (CHCS). Experimental results show the promising and competitive clustering performance of DV-MSC, compared to several existing state-of-the-arts.
引用
收藏
页数:11
相关论文
共 60 条
  • [1] Multi-view clustering
    Bickel, S
    Scheffer, T
    [J]. FOURTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2004, : 19 - 26
  • [2] Blum A., 1998, Proceedings of the Eleventh Annual Conference on Computational Learning Theory, P92, DOI 10.1145/279943.279962
  • [3] Bo C., 2013, J. Integr. Technol.
  • [4] Distributed optimization and statistical learning via the alternating direction method of multipliers
    Boyd S.
    Parikh N.
    Chu E.
    Peleato B.
    Eckstein J.
    [J]. Foundations and Trends in Machine Learning, 2010, 3 (01): : 1 - 122
  • [5] Cao X., 2015, Computer Vision and Pattern Recognition
  • [6] Chao G., 2017, A survey on multi-view clustering
  • [7] Multi-kernel maximum entropy discrimination for multi-view learning
    Chao, Guoqing
    Sun, Shiliang
    [J]. INTELLIGENT DATA ANALYSIS, 2016, 20 (03) : 481 - 493
  • [8] Chen P., 2021, Smoothed multi-view subspace clustering
  • [9] Chen Y., 2019, IEEE Trans. Image Process.
  • [10] Graph-regularized least squares regression for multi-view subspace clustering
    Chen, Yongyong
    Wang, Shuqin
    Zheng, Fangying
    Cen, Yigang
    [J]. KNOWLEDGE-BASED SYSTEMS, 2020, 194