A Survey on Hyperlink Prediction

被引:14
作者
Chen, Can [1 ]
Liu, Yang-Yu [1 ,2 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Channing Div Network Med, Boston, MA 02115 USA
[2] Univ Illinois, Ctr Artificial Intelligence & Modeling, Carl R Woese Inst Genom Biol, Champaign, IL 61801 USA
基金
美国国家卫生研究院;
关键词
Hypertext systems; Prediction methods; Learning systems; Indexes; Surveys; Resource management; Genomics; Deep learning; graph convolutional networks (GCNs); hypergraph learning; hypergraphs; hyperlink prediction;
D O I
10.1109/TNNLS.2023.3286280
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As a natural extension of link prediction on graphs, hyperlink prediction aims for the inference of missing hyperlinks in hypergraphs, where a hyperlink can connect more than two nodes. Hyperlink prediction has applications in a wide range of systems, from chemical reaction networks and social communication networks to protein-protein interaction networks. In this article, we provide a systematic and comprehensive survey on hyperlink prediction. We adopt a classical taxonomy from link prediction to classify the existing hyperlink prediction methods into four categories: similarity-based, probability-based, matrix optimization-based, and deep learning-based methods. To compare the performance of methods from different categories, we perform a benchmark study on various hypergraph applications using representative methods from each category. Notably, deep learning-based methods prevail over other methods in hyperlink prediction.
引用
收藏
页码:15034 / 15050
页数:17
相关论文
共 110 条
  • [51] Hidden Link Prediction in Criminal Networks Using the Deep Reinforcement Learning Technique
    Lim, Marcus
    Abdullah, Azween
    Jhanjhi, N. Z.
    Supramaniam, Mahadevan
    [J]. COMPUTERS, 2019, 8 (01)
  • [52] Functional organization of the maternal and paternal human 4D Nucleome
    Lindsly, Stephen
    Jia, Wenlong
    Chen, Haiming
    Liu, Sijia
    Ronquist, Scott
    Chen, Can
    Wen, Xingzhao
    Stansbury, Cooper
    Dotson, Gabrielle A.
    Ryan, Charles
    Rehemtulla, Alnawaz
    Omenn, Gilbert S.
    Wicha, Max
    Li, Shuai Cheng
    Muir, Lindsey
    Rajapakse, Indika
    [J]. ISCIENCE, 2021, 24 (12)
  • [53] 4DNvestigator: time series genomic data analysis toolbox
    Lindsly, Stephen
    Chen, Can
    Liu, Sijia
    Ronquist, Scott
    Dilworth, Samuel
    Perlman, Michael
    Rajapakse, Indika
    [J]. NUCLEUS, 2021, 12 (01) : 58 - 64
  • [54] Neural Trojans
    Liu, Yuntao
    Xie, Yang
    Srivastava, Ankur
    [J]. 2017 IEEE 35TH INTERNATIONAL CONFERENCE ON COMPUTER DESIGN (ICCD), 2017, : 45 - 48
  • [55] Link prediction in complex networks: A survey
    Lue, Linyuan
    Zhou, Tao
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (06) : 1150 - 1170
  • [56] Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota
    Magnusdottir, Stefania
    Heinken, Almut
    Kutt, Laura
    Ravcheev, Dmitry A.
    Bauer, Eugen
    Noronha, Alberto
    Greenhalgh, Kacy
    Jager, Christian
    Baginska, Joanna
    Wilmes, Paul
    Fleming, Ronan M. T.
    Thiele, Ines
    [J]. NATURE BIOTECHNOLOGY, 2017, 35 (01) : 81 - 89
  • [57] A Survey of Link Prediction in Complex Networks
    Martinez, Victor
    Berzal, Fernando
    Cubero, Juan-Carlos
    [J]. ACM COMPUTING SURVEYS, 2017, 49 (04)
  • [58] Maurya D, 2020, Arxiv, DOI arXiv:2011.07683
  • [59] Hyperedge Prediction Using Tensor Eigenvalue Decomposition
    Maurya, Deepak
    Ravindran, Balaraman
    [J]. JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2021, 101 (03) : 443 - 453
  • [60] Clustering and preferential attachment in growing networks
    Newman, MEJ
    [J]. PHYSICAL REVIEW E, 2001, 64 (02) : 4 - 251024