A Survey on Hyperlink Prediction

被引:14
作者
Chen, Can [1 ]
Liu, Yang-Yu [1 ,2 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Channing Div Network Med, Boston, MA 02115 USA
[2] Univ Illinois, Ctr Artificial Intelligence & Modeling, Carl R Woese Inst Genom Biol, Champaign, IL 61801 USA
基金
美国国家卫生研究院;
关键词
Hypertext systems; Prediction methods; Learning systems; Indexes; Surveys; Resource management; Genomics; Deep learning; graph convolutional networks (GCNs); hypergraph learning; hypergraphs; hyperlink prediction;
D O I
10.1109/TNNLS.2023.3286280
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As a natural extension of link prediction on graphs, hyperlink prediction aims for the inference of missing hyperlinks in hypergraphs, where a hyperlink can connect more than two nodes. Hyperlink prediction has applications in a wide range of systems, from chemical reaction networks and social communication networks to protein-protein interaction networks. In this article, we provide a systematic and comprehensive survey on hyperlink prediction. We adopt a classical taxonomy from link prediction to classify the existing hyperlink prediction methods into four categories: similarity-based, probability-based, matrix optimization-based, and deep learning-based methods. To compare the performance of methods from different categories, we perform a benchmark study on various hypergraph applications using representative methods from each category. Notably, deep learning-based methods prevail over other methods in hyperlink prediction.
引用
收藏
页码:15034 / 15050
页数:17
相关论文
共 110 条
  • [31] Hypergraph Learning: Methods and Practices
    Gao, Yue
    Zhang, Zizhao
    Lin, Haojie
    Zhao, Xibin
    Du, Shaoyi
    Zou, Changqing
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (05) : 2548 - 2566
  • [32] Ghahramani Z., 2005, P ADV NEUR INF PROC, V18
  • [33] A NEW SIMILARITY INDEX BASED ON PROBABILITY
    GOODALL, DW
    [J]. BIOMETRICS, 1966, 22 (04) : 882 - &
  • [34] node2vec: Scalable Feature Learning for Networks
    Grover, Aditya
    Leskovec, Jure
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 855 - 864
  • [35] Recent advances in model-assisted metabolic engineering br
    Gudmundsson, Steinn
    Nogales, Juan
    [J]. CURRENT OPINION IN SYSTEMS BIOLOGY, 2021, 28
  • [36] Gulcehre Caglar, 2014, Machine Learning and Knowledge Discovery in Databases. European Conference, ECML PKDD 2014. Proceedings: LNCS 8724, P530, DOI 10.1007/978-3-662-44848-9_34
  • [37] Hamilton WL, 2017, ADV NEUR IN, V30
  • [38] Genome-Scale Metabolic Modeling of the Human Microbiome in the Era of Personalized Medicine
    Heinken, Almut
    Basile, Arianna
    Hertel, Johannes
    Thinnes, Cyrille
    Thiele, Ines
    [J]. ANNUAL REVIEW OF MICROBIOLOGY, VOL 75, 2021, 2021, 75 : 199 - 222
  • [39] Most Tensor Problems Are NP-Hard
    Hillar, Christopher J.
    Lim, Lek-Heng
    [J]. JOURNAL OF THE ACM, 2013, 60 (06)
  • [40] Huang, 2007, ADV NEURAL INFORM PR, P1601, DOI DOI 10.7551/MITPRESS/7503.003.0205