A Survey on Hyperlink Prediction

被引:14
作者
Chen, Can [1 ]
Liu, Yang-Yu [1 ,2 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Channing Div Network Med, Boston, MA 02115 USA
[2] Univ Illinois, Ctr Artificial Intelligence & Modeling, Carl R Woese Inst Genom Biol, Champaign, IL 61801 USA
基金
美国国家卫生研究院;
关键词
Hypertext systems; Prediction methods; Learning systems; Indexes; Surveys; Resource management; Genomics; Deep learning; graph convolutional networks (GCNs); hypergraph learning; hypergraphs; hyperlink prediction;
D O I
10.1109/TNNLS.2023.3286280
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As a natural extension of link prediction on graphs, hyperlink prediction aims for the inference of missing hyperlinks in hypergraphs, where a hyperlink can connect more than two nodes. Hyperlink prediction has applications in a wide range of systems, from chemical reaction networks and social communication networks to protein-protein interaction networks. In this article, we provide a systematic and comprehensive survey on hyperlink prediction. We adopt a classical taxonomy from link prediction to classify the existing hyperlink prediction methods into four categories: similarity-based, probability-based, matrix optimization-based, and deep learning-based methods. To compare the performance of methods from different categories, we perform a benchmark study on various hypergraph applications using representative methods from each category. Notably, deep learning-based methods prevail over other methods in hyperlink prediction.
引用
收藏
页码:15034 / 15050
页数:17
相关论文
共 110 条
  • [1] Friends and neighbors on the Web
    Adamic, LA
    Adar, E
    [J]. SOCIAL NETWORKS, 2003, 25 (03) : 211 - 230
  • [2] Al Hasan M, 2011, SOCIAL NETWORK DATA ANALYTICS, P243
  • [3] Classes of small-world networks
    Amaral, LAN
    Scala, A
    Barthélémy, M
    Stanley, HE
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (21) : 11149 - 11152
  • [4] Arya D, 2020, Arxiv, DOI arXiv:2010.04558
  • [5] A gentle introduction to deep learning for graphs
    Bacciu, Davide
    Errica, Federico
    Micheli, Alessio
    Podda, Marco
    [J]. NEURAL NETWORKS, 2020, 129 : 203 - 221
  • [6] Baldassarre F, 2019, Arxiv, DOI arXiv:1905.13686
  • [7] Bandyopadhyay S, 2020, Arxiv, DOI arXiv:2002.03392
  • [8] Spectra of general hypergraphs
    Banerjee, Anirban
    Char, Arnab
    Mondal, Bibhash
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 518 : 14 - 30
  • [9] Scale-free networks
    Barabási, AL
    Bonabeau, E
    [J]. SCIENTIFIC AMERICAN, 2003, 288 (05) : 60 - 69
  • [10] Supervised Machine Learning applied to Link Prediction in Bipartite Social Networks
    Benchettara, Nesserine
    Kanawati, Rushed
    Rouveirol, Celine
    [J]. 2010 INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2010), 2010, : 326 - 330