Experimental and Numerical Study of Composite Honeycomb Sandwich Structures Under Low-Velocity Impact

被引:10
|
作者
Deng, Yunfei [1 ]
Hu, Xiaoyu [1 ]
Niu, Yijie [1 ]
Zheng, Yimei [1 ]
Wei, Gang [1 ]
机构
[1] Civil Aviat Univ China, Coll Aeronaut Engineer, Tianjin 300300, Peoples R China
关键词
Carbon fiber composite honeycomb; Low-velocity impact; Deformation process; Damage modes; Finite element analysis; PANELS; BEHAVIOR;
D O I
10.1007/s10443-023-10190-0
中图分类号
TB33 [复合材料];
学科分类号
摘要
The experimental and numerical investigations on the dynamic responses and failure mechanisms of honeycomb panels under low-velocity impact were carried out in the present work. The carbon fiber composite hexagonal honeycomb panels were fabricated using the hot press molding method. Then, low-velocity drop-weight impact tests on the composite honeycomb panels were conducted under impact energy levels of 5J, 10J, 30J, 50J, 60J, 70J, and 100J to study the deformation mechanisms and damage modes. The VUMAT was developed to model the behavior of sandwich panels, in which a progressive damage model based on the strain-based failure criterion of composite fabric and Yeh delamination failure criteria was implemented in ABAQUS/Explicit. Two-dimensional topological honeycomb configurations with the same relative density were established. The energy absorption and load-bearing capacity of hexagonal, square, triangular, Kagome, and two kinds of circular (CS and CH types) honeycombs under 100J impact energy were discussed. The results showed that the circular honeycomb (CH type) had the largest first peak force of 6.714 kN, while the hexagonal honeycomb had the smallest first peak force of 3.715 kN. Compared with hexagonal honeycomb, the energy absorption of the triangle, Kagome, and circular honeycombs (CH type) were increased by 37.15%, 38.18%, and 47.06%, respectively. This study provided a series of experimental and numerical results, which could provide a reference for selecting suitable honeycomb configurations in the protection field.
引用
收藏
页码:535 / 559
页数:25
相关论文
共 50 条
  • [21] Experimental and numerical study of low-velocity impact damage in sandwich panel with UHMWPE composite facings
    Yang, Bin
    Zhou, Qi
    Lee, Juhyeong
    Li, Yan
    Fu, Kunkun
    Yang, Dongmin
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2023, 284
  • [22] Research on low-velocity impact resistance of spherical honeycomb sandwich structures
    Deng, Yunfei
    Niu, Yijie
    Du, Chunzhi
    THIN-WALLED STRUCTURES, 2024, 204
  • [23] Dynamic response of multilayer curved aluminum honeycomb sandwich beams under low-velocity impact
    Zhang, Jianxun
    Yuan, Hui
    Li, Jianfeng
    Meng, Jixing
    Huang, Wei
    THIN-WALLED STRUCTURES, 2022, 177
  • [24] Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact
    Zhang, Xiaoyu
    Xu, Fei
    Zang, Yuyan
    Feng, Wei
    COMPOSITE STRUCTURES, 2020, 236
  • [25] An Experimental and Numerical Investigation on the Low-Velocity Impact Response of Nanoreinforced Polypropylene Core Sandwich Structures
    Tofighi, M. Bagheri
    Biglari, H.
    Shokrieh, M. M.
    MECHANICS OF COMPOSITE MATERIALS, 2022, 58 (02) : 209 - 226
  • [26] The response of honeycomb sandwich panels under low-velocity impact loading
    Meo, M
    Vignjevic, R
    Marengo, G
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2005, 47 (09) : 1301 - 1325
  • [27] Energy absorption characteristics of origami-inspired honeycomb sandwich structures under low-velocity impact loading
    Qi, Jiaqi
    Li, Cheng
    Tie, Ying
    Zheng, Yanping
    Duan, Yuechen
    MATERIALS & DESIGN, 2021, 207
  • [28] Experimental Study on Low-Velocity Impact Performance of GFRP Trapezoidal Corrugated Sandwich Structures
    Deng, Yunfei
    Deng, Yao
    Liu, Wenquan
    Zhang, Shitong
    Tian, Kuo
    JOURNAL OF COMPOSITES SCIENCE, 2023, 7 (07):
  • [29] Experimental Investigation on the Low-Velocity Impact Response of Tandem Nomex Honeycomb Sandwich Panels
    Fan, Jinbo
    Li, Penghui
    Guo, Weiqi
    Zhao, Xiuguo
    Su, Chen
    Xu, Xinxi
    POLYMERS, 2023, 15 (02)
  • [30] Stiffened composite plates as equivalent structures for sandwich panels under low-velocity hail impact
    Lalisani, Abdolbaset
    Sadighi, Mojtaba
    Goudarzi, Taha
    Alderliesten, Rene
    Hedayati, Reza
    MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES, 2025,