Efficient Halftoning via Deep Reinforcement Learning

被引:2
|
作者
Jiang, Haitian [1 ]
Xiong, Dongliang [1 ]
Jiang, Xiaowen [1 ]
Ding, Li [2 ]
Chen, Liang [2 ]
Huang, Kai [1 ]
机构
[1] Zhejiang Univ, Inst VLSI Design, Hangzhou 310058, Peoples R China
[2] Apex Microelect Co Ltd, Zhuhai 519075, Peoples R China
关键词
Measurement; Convolutional neural networks; Training; Reinforcement learning; Deep learning; Visualization; Extensibility; Halftoning; dithering; deep learning; reinforcement learning; blue noise; ERROR-DIFFUSION; VISIBILITY;
D O I
10.1109/TIP.2023.3318937
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Halftoning aims to reproduce a continuous-tone image with pixels whose intensities are constrained to two discrete levels. This technique has been deployed on every printer, and the majority of them adopt fast methods (e.g., ordered dithering, error diffusion) that fail to render structural details, which determine halftone's quality. Other prior methods of pursuing visual pleasure by searching for the optimal halftone solution, on the contrary, suffer from their high computational cost. In this paper, we propose a fast and structure-aware halftoning method via a data-driven approach. Specifically, we formulate halftoning as a reinforcement learning problem, in which each binary pixel's value is regarded as an action chosen by a virtual agent with a shared fully convolutional neural network (CNN) policy. In the offline phase, an effective gradient estimator is utilized to train the agents in producing high-quality halftones in one action step. Then, halftones can be generated online by one fast CNN inference. Besides, we propose a novel anisotropy suppressing loss function, which brings the desirable blue-noise property. Finally, we find that optimizing SSIM could result in holes in flat areas, which can be avoided by weighting the metric with the contone's contrast map. Experiments show that our framework can effectively train a light-weight CNN, which is 15x faster than previous structure-aware methods, to generate blue-noise halftones with satisfactory visual quality. We also present a prototype of deep multitoning to demonstrate the extensibility of our method.
引用
收藏
页码:5494 / 5508
页数:15
相关论文
共 50 条
  • [1] HALFTONING WITH MULTI-AGENT DEEP REINFORCEMENT LEARNING
    Jiang, Haitian
    Xiong, Dongliang
    Jiang, Xiaowen
    Yin, Aiguo
    Ding, Li
    Huang, Kai
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 641 - 645
  • [2] Efficient Camera Exposure Control for Visual Odometry via Deep Reinforcement Learning
    Zhang, Shuyang
    He, Jinhao
    Zhu, Yilong
    Wu, Jin
    Yuan, Jie
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (02): : 1609 - 1616
  • [3] Learning Battles in ViZDoom via Deep Reinforcement Learning
    Shao, Kun
    Zhao, Dongbin
    Li, Nannan
    Zhu, Yuanheng
    PROCEEDINGS OF THE 2018 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND GAMES (CIG'18), 2018, : 389 - 392
  • [4] Sample Efficient Reinforcement Learning Method via High Efficient Episodic Memory
    Yang, Dujia
    Qin, Xiaowei
    Xu, Xiaodong
    Li, Chensheng
    Wei, Guo
    IEEE ACCESS, 2020, 8 : 129274 - 129284
  • [5] Photo Cropping via Deep Reinforcement Learning
    Zhang, Yaqing
    Li, Xueming
    Li, Xuewei
    2019 IEEE INTERNATIONAL CONFERENCE ON AGENTS (ICA), 2019, : 86 - 90
  • [6] Improving Deep Reinforcement Learning via Transfer
    Du, Yunshu
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 2405 - 2407
  • [7] EFFICIENT INDOOR LOCALIZATION VIA REINFORCEMENT LEARNING
    Milioris, Dimitris
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 8350 - 8354
  • [8] Seek-and-Hide: Adversarial Steganography via Deep Reinforcement Learning
    Pan, Wenwen
    Yin, Yanling
    Wang, Xinchao
    Jing, Yongcheng
    Song, Mingli
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (11) : 7871 - 7884
  • [9] Transfer Learning in Deep Reinforcement Learning
    Islam, Tariqul
    Abid, Dm. Mehedi Hasan
    Rahman, Tanvir
    Zaman, Zahura
    Mia, Kausar
    Hossain, Ramim
    PROCEEDINGS OF SEVENTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2022, VOL 1, 2023, 447 : 145 - 153
  • [10] Efficient Novelty Search Through Deep Reinforcement Learning
    Shi, Longxiang
    Li, Shijian
    Zheng, Qian
    Yao, Min
    Pan, Gang
    IEEE ACCESS, 2020, 8 : 128809 - 128818