GAMMA CONVERGENCE FOR THE DE GENNES-CAHN-HILLIARD ENERGY

被引:0
|
作者
Dai, Shibin [1 ]
Renzi, Joseph [1 ]
Wise, Steven M. [2 ]
机构
[1] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
[2] Univ Tennessee, Dept Math, 227 Ayres Hall 1403 Circle Dr, Knoxville, TN 37996 USA
基金
美国国家科学基金会;
关键词
de Gennes-Cahn-Hilliard energy; Gamma convergence; sharp interface limit; surface diffusion; PHASE-FIELD MODEL; FINITE-ELEMENT-METHOD; SURFACE-DIFFUSION; DISCRETE SCHEME; EQUATION; EVOLUTION; MOTION; FILMS; SHARP; LAWS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The degenerate de Gennes-Cahn-Hilliard (dGCH) equation is a model for phase separation which may more closely approximate surface diffusion than others in the limit when the thickness of the transition layer approaches zero. As a first step to understand the limiting behavior, in this paper we study the Gamma-limit of the dGCH energy. We find that its Gamma-limit is a constant multiple of the interface area, where the constant is determined by the de Gennes coefficient together with the double well potential. In contrast, the transition layer profile is solely determined by the double well potential.
引用
收藏
页码:2131 / 2144
页数:14
相关论文
共 50 条
  • [41] Stability and convergence of a second-order mixed finite element method for the Cahn-Hilliard equation
    Diegel, Amanda E.
    Wang, Cheng
    Wise, Steven M.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (04) : 1867 - 1897
  • [42] A second-order decoupled energy stable numerical scheme for Cahn-Hilliard-Hele-Shaw system
    Gao, Yali
    Li, Rui
    Mei, Liquan
    Lin, Yanping
    APPLIED NUMERICAL MATHEMATICS, 2020, 157 : 338 - 355
  • [43] ENERGY-DECAYING EXTRAPOLATED RK-SAV METHODS FOR THE ALLEN-CAHN AND CAHN-HILLIARD EQUATIONS
    Akrivis, Georgios
    Li, Buyang
    li, Dongfang
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (06): : A3703 - A3727
  • [44] Accurate and efficient algorithms with unconditional energy stability for the time fractional Cahn-Hilliard and Allen-Cahn equations
    Liu, Zhengguang
    Li, Xiaoli
    Huang, Jian
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (03) : 2613 - 2633
  • [45] Energy stable numerical scheme for the viscous Cahn-Hilliard-Navier-Stokes equations with moving contact line
    Cherfils, Laurence
    Petcu, Madalina
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (03) : 1113 - 1133
  • [46] A Decoupled Energy Stable Numerical Scheme for the Modified Cahn-Hilliard-Hele-Shaw System with Logarithmic Potential
    Wang, Xianxia
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [47] Energy equality for weak solutions to Cahn-Hilliard/Navier-Stokes equations
    Liang, Zhilei
    Niu, Qiang
    Shuai, Jiangyu
    APPLIED MATHEMATICS LETTERS, 2020, 99
  • [48] Regularity criterion on energy equality for compressible Cahn-Hilliard-Navier-Stokes equations
    Liang, Zhilei
    Shuai, Jiangyu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (01) : 287 - 300
  • [49] Numerical analysis of energy stable weak Galerkin schemes for the Cahn-Hilliard equation
    Zhao, Wenju
    Guan, Qingguang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 118
  • [50] A practical numerical scheme for the ternary Cahn-Hilliard system with a logarithmic free energy
    Jeong, Darae
    Kim, Junseok
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 442 : 510 - 522