GAMMA CONVERGENCE FOR THE DE GENNES-CAHN-HILLIARD ENERGY

被引:0
|
作者
Dai, Shibin [1 ]
Renzi, Joseph [1 ]
Wise, Steven M. [2 ]
机构
[1] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
[2] Univ Tennessee, Dept Math, 227 Ayres Hall 1403 Circle Dr, Knoxville, TN 37996 USA
基金
美国国家科学基金会;
关键词
de Gennes-Cahn-Hilliard energy; Gamma convergence; sharp interface limit; surface diffusion; PHASE-FIELD MODEL; FINITE-ELEMENT-METHOD; SURFACE-DIFFUSION; DISCRETE SCHEME; EQUATION; EVOLUTION; MOTION; FILMS; SHARP; LAWS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The degenerate de Gennes-Cahn-Hilliard (dGCH) equation is a model for phase separation which may more closely approximate surface diffusion than others in the limit when the thickness of the transition layer approaches zero. As a first step to understand the limiting behavior, in this paper we study the Gamma-limit of the dGCH energy. We find that its Gamma-limit is a constant multiple of the interface area, where the constant is determined by the de Gennes coefficient together with the double well potential. In contrast, the transition layer profile is solely determined by the double well potential.
引用
收藏
页码:2131 / 2144
页数:14
相关论文
共 50 条
  • [1] Minimizers for the de Gennes-Cahn-Hilliard energy under strong anchoring conditions
    Dai, Shibin
    Ramadan, Abba
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (06)
  • [2] THE CAHN-HILLIARD-DE GENNES AND GENERALIZED PENROSE-FIFE MODELS FOR POLYMER PHASE SEPARATION
    Pawlow, Irena
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (06) : 2711 - 2739
  • [3] CONVERGENCE TO EQUILIBRIUM FOR TIME AND SPACE DISCRETIZATIONS OF THE CAHN-HILLIARD EQUATION
    Brachet, Matthieu
    Parnaudeau, Philippe
    Pierre, Morgan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, : 1987 - 2031
  • [4] Convergence Analysis for the Invariant Energy Quadratization (IEQ) Schemes for Solving the Cahn-Hilliard and Allen-Cahn Equations with General Nonlinear Potential
    Yang, Xiaofeng
    Zhang, Guo-Dong
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (03)
  • [5] A weakly nonlinear, energy stable scheme for the strongly anisotropic Cahn-Hilliard equation and its convergence analysis
    Cheng, Kelong
    Wang, Cheng
    Wise, Steven M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 405
  • [6] CONVERGENCE OF THE ONE-DIMENSIONAL CAHN-HILLIARD EQUATION
    Bellettini, Giovanni
    Bertini, Lorenzo
    Mariani, Mauro
    Novaga, Matteo
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (05) : 3458 - 3480
  • [7] The Convergence of Attractors for Some Discrete Cahn-Hilliard Systems
    Wang, Ruijing
    Li, Chunqiu
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2022, 2022
  • [8] Energy Stable Numerical Schemes for Ternary Cahn-Hilliard System
    Chen, Wenbin
    Wang, Cheng
    Wang, Shufen
    Wang, Xiaoming
    Wise, Steven M.
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (02)
  • [9] On the convergence of linear and nonlinear Parareal methods for the Cahn-Hilliard equation
    Garai, Gobinda
    Mandal, Bankim C.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 134
  • [10] Non-iterative, unconditionally energy stable and large time-stepping method for the Cahn-Hilliard phase-field model with Flory-Huggins-de Gennes free energy
    Zhang, Jun
    Yang, Xiaofeng
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2020, 46 (03)