The time-fractional generalized Z-K equation: Analysis of Lie group, similarity reduction, conservation laws, and explicit solutions

被引:1
作者
AL-Denari, Rasha B. [1 ]
Ahmed, Engy A. [1 ]
Tharwat, Mohammed M. [1 ]
机构
[1] Beni Suef Univ, Fac Sci, Dept Math & Comp Sci, Bani Suwayf 62511, Egypt
关键词
conservation laws; explicit power series; fractional sub-equation method; lie group analysis; Riemann-Liouville derivatives; similarity reduction; time-fractional generalized Z-K equation; REAL-WORLD APPLICATIONS; ZAKHAROV-KUZNETSOV; CALCULUS;
D O I
10.1002/mma.8773
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the three-dimensional non-linear time-fractional generalized Zakharov-Kuznetsov (Z-K) equation that describes the dust-ion acoustic solitary waves in a magnetized dusty plasma. Based on the definition of the Riemann-Liouville (R-L) fractional derivatives, the analysis of the Lie group method can be applied to find the symmetries for the considered equation. After that, these symmetries enable us to transform the equation under study into a two-dimensional non-linear ordinary differential equation of fractional order in the sense of ErdLelyi-Kober (E-K) fractional operator. Also, we obtain a set of new analytical solutions for the time-fractional generalized Z-K equation via the power series and the fractional sub-equation methods. Furthermore, we compute the conservation laws for this equation with a detailed derivation based on the formal Lagrangian.
引用
收藏
页码:4475 / 4493
页数:19
相关论文
共 45 条
[1]   Application of fractional subequation method to nonlinear evolution equations [J].
Abdelkawy, Mohamed A. ;
El-Kalaawy, Omar H. ;
Al-Denari, Rasha B. ;
Biswas, Anjan .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2018, 23 (05) :710-723
[2]   Extended Riemann-Liouville type fractional derivative operator with applications [J].
Agarwal, P. ;
Nieto, Juan J. ;
Luo, M. -J. .
OPEN MATHEMATICS, 2017, 15 :1667-1681
[3]  
Ali MN, 2019, SeMA Journal, V76, P15, DOI [10.1007/s40324-018-0152-6, 10.1007/s40324-018-0152-6, DOI 10.1007/S40324-018-0152-6]
[4]   Extension of the fractional derivative operator of the Riemann-Liouville [J].
Baleanu, Dumitru ;
Agarwal, Praveen ;
Parmar, Rakesh K. ;
Alqurashi, Maysaa M. ;
Salahshour, Soheil .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (06) :2914-2924
[5]   Real world applications of fractional models by Atangana-Baleanu fractional derivative [J].
Bas, Erdal ;
Ozarslan, Ramazan .
CHAOS SOLITONS & FRACTALS, 2018, 116 :121-125
[6]  
Caputo M, 2016, Progress in Fractional Differentiation and Applications, V2, P1, DOI [10.18576/pfda/020101, DOI 10.12785/PFDA/010201]
[7]   Lie group analysis method for two classes of fractional partial differential equations [J].
Chen, Cheng ;
Jiang, Yao-Lin .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 26 (1-3) :24-35
[8]   Comments on various extensions of the Riemann-Liouville fractional derivatives : About the Leibniz and chain rule properties [J].
Cresson, Jacky ;
Szafranska, Anna .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 82
[9]   Modulational instability: Conservation laws and bright soliton solution of ion-acoustic waves in electron-positron-ion-dust plasmas [J].
EL-Kalaawy, O. H. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (02)
[10]   New: Variational principle-exact solutions and conservation laws for modified ion-acoustic shock waves and double layers with electron degenerate in plasma [J].
EL-Kalaawy, O. H. .
PHYSICS OF PLASMAS, 2017, 24 (03)