Asymmetric Fuglede-Putnam theorem for unbounded M-hyponormal operators

被引:0
|
作者
Prasad, T. [1 ]
Lal, E. Shine [2 ]
Ramya, P. [3 ]
机构
[1] Univ Calicut, Dept Math, Malapuram 673635, Kerala, India
[2] Univ Coll, Dept Math, Thiruvananthapuram, Kerala, India
[3] NSS Coll, Dept Math, Nemmara, Kerala, India
关键词
Closed densely defined M-hyponormal operator; Subnormal operators; Fuglede-Putnam theorem; EXTENSION;
D O I
10.1007/s43036-022-00231-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A closed densely defined operator T on a Hilbert space H is called M-hyponormal if D(T) subset of D(T*) and there exists M > 0 for which parallel to(T-zI)*x parallel to <= M parallel to(T-zI)x parallel to for all z is an element of C and x is an element of D(T). In this paper, we prove that if A:H -> K is a bounded linear operator, such that AB* subset of TA, where B is a closed subnormal (resp. a closed M-hyponormal) on H, T is a closed M-hyponormal (resp. a closed subnormal) on a Hilbert space K, then (i) AB subset of T*A (ii) (ranA*) over tilde reduces B to the normal operator B vertical bar((ranA*) over tilde) over bar and (iii) (ranA*) over tilde reduces T to the normal operator T vertical bar((ranA) over tilde).
引用
收藏
页数:8
相关论文
共 24 条
  • [1] Asymmetric Fuglede–Putnam theorem for unbounded M-hyponormal operators
    T. Prasad
    E. Shine Lal
    P. Ramya
    Advances in Operator Theory, 2023, 8
  • [2] FUGLEDE-PUTNAM'S THEOREM FOR W-HYPONORMAL OPERATORS
    Bachir, A.
    Lombarkia, F.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (04): : 777 - 786
  • [3] FUGLEDE-PUTNAM THEOREM FOR w-HYPONORMAL OR CLASS y OPERATORS
    Bachir, A.
    ANNALS OF FUNCTIONAL ANALYSIS, 2013, 4 (01): : 53 - 60
  • [4] Quasinormality and Fuglede-Putnam theorem for (s,p)-w-hyponormal operators
    Rashid, M. H. M.
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (08) : 1600 - 1616
  • [5] Fuglede-Putnam theorem for (α, β)-normal operators
    Bachir, A.
    Prasad, T.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (03) : 1243 - 1249
  • [6] FUGLEDE-PUTNAM THEOREM FOR LOCALLY MEASURABLE OPERATORS
    Ber, A.
    Chilin, V.
    Sukochev, F.
    Zanin, D.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (04) : 1681 - 1692
  • [7] An All-Unbounded-Operator Version of the Fuglede-Putnam Theorem
    Mortad, Mohammed Hichem
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (06) : 1269 - 1273
  • [8] ON THE GENERALIZED FUGLEDE-PUTNAM THEOREM
    Rashid, M. H. M.
    Noorani, M. S. M.
    Saari, A. S.
    TAMKANG JOURNAL OF MATHEMATICS, 2008, 39 (03): : 239 - 246
  • [9] Fuglede-Putnam type theorems for (p,k)-quasihyponormal operators via hyponormal operators
    Yuan, Jiang-Tao
    Wang, Cai-Hong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019,
  • [10] AN EXTENSION OF THE FUGLEDE-PUTNAM'S THEOREM TO CLASS A OPERATORS
    Mecheri, Salah
    Uchiyama, Atsushi
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (01): : 57 - 61