A class of modulus-based matrix splitting methods for vertical linear complementarity problem

被引:16
作者
Li, Cui-Xia [1 ]
Wu, Shi-Liang [1 ]
机构
[1] Yunnan Normal Univ, Sch Math, Kunming, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Vertical linear complementarity problem; modulus-based matrix splitting; iteration method; convergence; ITERATION METHODS; CONVERGENCE; ALGORITHMS;
D O I
10.1080/02331934.2022.2069021
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, by transforming the vertical linear complementarity problem (VLCP) as a certain absolute value equation, we design a class of modulus-based matrix splitting iteration methods for solving the VLCP. The convergence properties of the proposed methods are discussed in depth. By making use of some numerical experiments, we confirm the efficiency of the proposed methods. Numerical results show that the proposed methods are superior to the classical modulus-based matrix splitting iteration methods.
引用
收藏
页码:2499 / 2516
页数:18
相关论文
共 40 条
[1]  
[Anonymous], 1970, J. Comb. Theory, DOI DOI 10.1016/S0021-9800(70)80010-2
[2]   Modulus-based synchronous multisplitting iteration methods for linear complementarity problems [J].
Bai, Zhong-Zhi ;
Zhang, Li-Li .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (03) :425-439
[3]   Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems [J].
Bai, Zhong-Zhi ;
Zhang, Li-Li .
NUMERICAL ALGORITHMS, 2013, 62 (01) :59-77
[4]   Modulus-based matrix splitting iteration methods for linear complementarity problems [J].
Bai, Zhong-Zhi .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2010, 17 (06) :917-933
[5]   On the convergence of the multisplitting methods for the linear complementarity problem [J].
Bai, ZZ .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 21 (01) :67-78
[6]  
Berman A., 1994, Nonnegative Matrices in the Mathematical Sciences, V9
[7]  
Cottle R.W., 1992, The Linear Complementarity Problem
[8]   On the choice of parameters in MAOR type splitting methods for the linear complementarity problem [J].
Cvetkovic, Lj. ;
Hadjidimos, A. ;
Kostic, V. .
NUMERICAL ALGORITHMS, 2014, 67 (04) :793-806
[9]   A modified modulus method for symmetric positive-definite linear complementarity problems [J].
Dong, Jun-Liang ;
Jiang, Mei-Qun .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2009, 16 (02) :129-143
[10]   Engineering and economic applications of complementarity problems [J].
Ferris, MC ;
Pang, JS .
SIAM REVIEW, 1997, 39 (04) :669-713