Multi-objective optimization of the organic Rankine cycle cascade refrigeration cycle driven by sugar mills waste heat

被引:0
|
作者
Wang, Zongrun [1 ]
Guan, Wei [2 ]
Zhang, Song [3 ]
Sang, Hailang [3 ]
Que, Wenshuai [1 ]
Liang, Lu [4 ]
机构
[1] Guangxi Univ, Sch Mech Engn, Guangxi Key Lab Mfg Syst & Adv Mfg Technol, Nanning, Peoples R China
[2] Guangxi Univ, Guangxi Key Lab Petrochem Resource Proc & Proc Int, Nanning, Peoples R China
[3] Guangxi Yuchai Machinery Co Ltd, Res & Engn Inst, Adv Technol Ctr, Yulin, Peoples R China
[4] Guangxi Univ, Coll Elect Engn, Nanning, Peoples R China
关键词
sugar mill; waste heat recovery; thermodynamic analysis; economic analysis; multi-objective optimization; THERMODYNAMIC ANALYSIS; POWER-GENERATION; EXERGY ANALYSES; ENERGY; COGENERATION; RECOVERY; SYSTEM; PERFORMANCE; BAGASSE; BIOMASS;
D O I
10.3389/fenrg.2024.1308519
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The research on the recovery of low-grade thermal energy carried away by boiler flue gas is significant for sugar mills. This paper designs a waste heat recovery system based on sugar plant flue gas, integrating absorption refrigeration cycle and the organic Rankine cycle, and the effects of nine working fluids on the system are investigated. The aim is to realize the multi-form conversion of energy. The performance of the system is evaluated in terms of energy, exergy, and economic metrics. Multi-objective optimization is performed with the method of the NSGA-II genetic algorithm. The results show that Butane is the most suitable working fluid for ORC. The exergy efficiency of the system is 32.125% before optimisation, with an increased space cooling capacity of 15820.56 MW per year for the sugar mill. The exergy destruction analysis of the system reveals that the generator accounts for the highest proportion of exergy destruction (50.8%). The entire system shows the LCOE is as low as 0.0406$/kWh under the optimized condition. The optimized system can obtain an estimated annual electricity sales revenue of $136,300, and the sugar mill can save $308,600 in cooling costs. In addition, the payback period can be shortened to 5.79 years.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Thermo-economic assessment and multi-objective optimization of organic Rankine cycle driven by solar energy and waste heat
    Zhang, Siyuan
    Liu, Xinxin
    Liu, Liang
    Pan, Xiaohui
    Li, Qibin
    Wang, Shukun
    Jiao, Youzhou
    He, Chao
    Li, Gang
    ENERGY, 2024, 290
  • [2] Multi-objective thermo-economic optimization of a combined organic Rankine cycle and vapour compression refrigeration cycle
    Salim, Mohammad Saad
    Kim, Man-Hoe
    ENERGY CONVERSION AND MANAGEMENT, 2019, 199
  • [3] Thermoeconomic multi-objective optimization of an organic Rankine cycle for exhaust waste heat recovery of a diesel engine
    Yang, Fubin
    Zhang, Hongguang
    Song, Songsong
    Bei, Chen
    Wang, Hongjin
    Wang, Enhua
    ENERGY, 2015, 93 : 2208 - 2228
  • [4] Multi-Objective Optimization of Organic Rankine Cycle (ORC) for Tractor Waste Heat Recovery Based on Particle Swarm Optimization
    Pan, Wanming
    Li, Junkang
    Zhang, Guotao
    Zhou, Le
    Tu, Ming
    ENERGIES, 2022, 15 (18)
  • [5] Towards improvement of waste heat recovery systems: A multi-objective optimization of different organic Rankine cycle configurations
    Laouid Y.A.A.
    Kezrane C.
    Lasbet Y.
    Pesyridis A.
    International Journal of Thermofluids, 2021, 11
  • [6] Sensitivity analysis and multi-objective optimization of organic Rankine cycle integrated with vapor compression refrigeration system
    Ashwni
    Ahmad, Sherwani
    Tiwari, Deepak
    Anil, Kumar
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2021,
  • [7] Performance analysis and multi-objective optimization of organic Rankine cycle for low-grade sinter waste heat recovery
    Feng, Junsheng
    Cheng, Xinni
    Wang, Huanhuan
    Zhao, Liang
    Wang, Haitao
    Dong, Hui
    CASE STUDIES IN THERMAL ENGINEERING, 2024, 53
  • [8] Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery
    Yang, Fubin
    Cho, Heejin
    Zhang, Hongguang
    Zhang, Jian
    APPLIED ENERGY, 2017, 205 : 1100 - 1118
  • [9] Multi-objective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm
    Wang, Jiangfeng
    Yan, Zhequan
    Wang, Man
    Li, Maoqing
    Dai, Yiping
    ENERGY CONVERSION AND MANAGEMENT, 2013, 71 : 146 - 158
  • [10] Multi-objective analysis and optimization of cascade supercritical CO2 cycle and organic Rankine cycle systems for waste-to-energy power plant
    Pan, Mingzhang
    Chen, Xiaoting
    Li, Xiaoya
    APPLIED THERMAL ENGINEERING, 2022, 214