On the rationality of Fano-Enriques threefolds

被引:0
作者
Sarikyan, Arman [1 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
来源
ALGEBRAIC GEOMETRY | 2023年 / 10卷 / 06期
关键词
Fano-Enriques threefolds; Fano varieties; rationality; pliability; DEL PEZZO SURFACES; BIRATIONAL PROPERTIES; VARIETIES; 3-FOLDS; PENCILS;
D O I
10.14231/AG-2023-023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Fano-Enriques threefold is a 3-dimensional non-Gorenstein Fano variety of index 1 with at most canonical singularities. We study the birational geometry of Fano-Enriques threefolds with terminal cyclic quotient singularities. We investigate their rationality and also provide an example of a Fano-Enriques threefold whose pliability is 9, that is, a Fano-Enriques threefold birationally equivalent to exactly nine Mori fibre spaces in the Sarkisov category.
引用
收藏
页码:643 / 665
页数:23
相关论文
共 29 条
[1]  
[Anonymous], 1997, Contemp. Math., V207, P43, DOI [10.1090/conm/207/02718, DOI 10.1090/CONM/207/02718]
[2]  
BAYLE L, 1994, J REINE ANGEW MATH, V449, P9
[3]  
BEAUVILLE A, 1977, ANN SCI ECOLE NORM S, V10, P309
[4]  
BOTTA LP, 1983, COMPOS MATH, V48, P167
[5]  
Chel'tsov I, 2005, RUSS MATH SURV+, V60, P875, DOI [10.1070/RM2005v060n05ABEH003736, 10.4213/rm1643]
[6]   Bounded three-dimensional Fano varieties of integer index [J].
Chel'tsov, IA .
MATHEMATICAL NOTES, 1999, 66 (3-4) :360-365
[8]   Rationality of an Enriques-Fano threefold of genus five [J].
Cheltsov, IA .
IZVESTIYA MATHEMATICS, 2004, 68 (03) :607-618
[9]  
Conte A., 1985, ANN SCUOLA NORM SUP, V12, P43
[10]   Birational geometry of terminal quartic 3-folds, I [J].
Corti, A ;
Mella, M .
AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (04) :739-761